NAVAL POSTGRADUATE SCHOOL MONTEREY CA DEVELOPMENT OF A MICROPROCESSOR-RASED INSTRUMENT FOR STATIC TES--ETC(U) SEP 79 A H BARBER AD-A081 083 UNCLASSIFIED 1 OF 2 ADB: DB3

NAVAL POSTGRADUATE SCHOOL Monterey, California

THESIS

FEB 2 6 1980

DEVELOPMENT OF A MICROPROCESSOR-BASED INSTRUMENT FOR STATIC TESTING SMALL ROCKET ENGINES

by

Arthur Houghton Barber, III

September 1979

Thesis Advisor:

M. L. Cotton

Approved for public release; distribution unlimited.

13 117

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS REPORT DOCUMENTATION PAGE REPORT NUMBER S. RECIPIENT'S CATALOG NUMBER 2. GOVT ACCESSION NO. 4. TITLE fand Country THE OF REPORT & PERIOD COVERED Development of a Microprocessor-Based Master's Thesise Instrument for Static Testing Small September 1979 Rocket Engines. 4. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(s) S. CONTRACT OR GRANT NUMBER(4) Arthur Houghton Barber, III 9. PERFORMING ORGANIZATION NAME AND ADDRESS PROGRAM ELEMENT, PROJECT, AREA & WORK UNIT HUMBERS Naval Postgraduate School Monterey, California 93940 11. CONTROLLING OFFICE NAME AND ADDRESS Naval Postgraduate School Monterey, California 93940 14. MONITORING AGENCY NAME & ADDRESS(Il different from Controlling Office) 18. SECURITY CLASS. (of this report) Naval Postgraduate School Unclassified Monterey, California 93940 154. DECLASSIFICATION/DOWNGRADING 16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited. 17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Solid rocket testing Static test stand Pyrotechnics testing

Microprocessor Instrument Rocket engine testing

20. ABSTRACT (Continue an reverse side if necessary and identify by block number)

A microprocessor-based instrument was developed for static testing solid-fuel rocket engines having peak thrusts of 130 Newtons or less and total impulses of up to 100 Newton-seconds. It measured peak thrust, total impulse, burn time, pyrotechnic delay time, and maximum casing external temperature, all to relative accuracies of two percent of the smallest expected values. This corresponds to better than 0.1 percent of-

DD 1 JAN 73 1473 (Page 1)

EDITION OF 1 NOV 68 IS OBSOLETE S/N 0102-014-6601 |

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

25/11:0

PRUMPY ELASSIFICATION OF THIS PAGE/When Rose Reserve

full scale. The instrument was designed for minimum parts cost and for portable operation from two twelve-volt batteries. It may be easily modified to test engines with five to ten times greater thrusts and total impulses.

Accession for

MIIS GLUL

DDC TAB

Universaled

Justific to the

DD Form 1473 S/N 0102-014-6601 Approved for public release; distribution unlimited.

Development of a Microprocessor-Based Instrument for Static Testing Small Rocket Engines

by

Arthur Houghton Barber, III Lieutenant, United States Navy B.S., MIT, 1973

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL September 1979

Author	arthur Houghton Barber III					
Approved by:	Mikkell h. Cotton. Thesis Advisor					
	R. Paulie, ger Second Reader					
	Chairman, Department of Electrical Engineering					
	Chairman, Department of Electrical Engineering					
	Dean of Science and Engineering					

ABSTRACT

A microprocessor-based instrument was developed for static testing solid-fuel rocket engines having peak thrusts of 130 Newtons or less and total impulses of up to 100 Newton-seconds. It measured peak thrust, total impulse, burn time, pyrotechnic delay time, and maximum casing external temperature, all to relative accuracies of two percent of the smallest expected values. This corresponds to better than 0.1 percent of full-scale. The instrument was designed for minimum parts cost and for portable operation from two twelve-volt batteries. It may be easily modified to test engines with five to ten times greater thrusts and total impulses.

TABLE OF CONTENTS

I.	INTRODUCTION	- 9
II.	DESIGN REQUIREMENTS	-12
	A. INPUT CHARACTERISTICS	-12
	B. CONSTRAINTS ON PARTS SELECTION	-15
	C. ACCURACY REQUIREMENTS	-18
	D. NOISE MINIMIZATION	-20
III.	TRANSDUCER AND ANALOG SYSTEM	- 23
	A. THRUST TRANSDUCER DESIGN	- 23
	B. AMPLIFIER AND FILTER DESIGN	-30
	C. TEMPERATURE TRANSDUCER DESIGN	-35
IV.	DIGITAL SYSTEM HARDWARE	- 43
	A. INTERFACE CIRCUITRY	-43
	B. MICROPROCESSOR AND MEMORY SYSTEMS	- 48
	C. INPUT/OUTPUT CIRCUITRY	- 54
v.	SYSTEM SOFTWARE	-60
	A. STRUCTURE AND GENERAL FEATURES	-60
	B. SOFTWARE A/D CONVERSION	-65
	C. MAIN OPERATING PROGRAM	-67
	D. SUBROUTINES AND MINOR PROGRAMS	- 75
VI.	CONCLUSION	- 79
APPEN	DIX A. CIRCUIT SCHEMATICS	-81
APPEN	DIX B. INSTRUMENT OPERATING INSTRUCTIONS	-88
COMDII	TED DDOCDAM	_90

LIST	OF	REFERENCES1	03
INITI	AT.	DISTRIBUTION LIST1	04

LIST OF TABLES

I.	Characteristics of Design Inputs to System12
II.	Characteristics of Transducer Beams with Center Mass29
III.	Amplifier Performance for Gain of 1000 33
IV.	System Memory Map51
v.	Decoding of LED/Comparator Select Lines 57
VI.	Decoding of Data Routing Control Lines 58
VII.	Functions of Input Keys61

LIST OF FIGURES

1.	System Block Diagram11
2.	Example Shapes of Thrust-time Inputs13
3.	Thrust Transducer26
4.	General Thermocouple Circuit Characteristics 39
5.	Four-bit Straight-binary Successive Approximation A/D Conversion68
6.	Flowchart of Main Operating Program70
7.	Thrust Transducer Amplifier and Filter Circuit81
8.	Thermocouple Amplifier and Filter Circuit82
9.	Thermocouple Compensation and Peak Detection Circuit83
.0.	Digital Interface Circuit84
11.	Microprocessor and its Support Circuitry85
2.	Memory System86
13.	Digital Input/Output Circuit87

I. INTRODUCTION

The object of this thesis effort was to develop a minimum-cost, field-transportable instrument for static testing small solid-fuel rocket engines and accurately measuring several of their performance parameters. The system was specifically tailored to test model rocket engines for compliance with various state and Federal safety requirements and international standards for use in record attempts. For these purposes, measurements of total impulse, peak thrust, thrust duration, pyrotechnic delay duration, and casing external temperature were required, all to an accuracy of two percent of the peak value in each test. This instrument could be used with little modification to test any type of rocket engine having a thrust of 150 pounds or less and a total impulse of less than 200 pound-seconds.

The various parameters of interest here could certainly all have been measured with purely analog electronics. This could, for example, have been done by use of a multi-channel fast-response chart recorder. Such a recorder is very expensive and not easily portable, and its accuracy depends on proper selection of the scales to be used, which requires some advance knowledge of the performance expected from the test item. A microprocessor-based digital system has none of these disadvantages, and this is why the more complex digital design was used.

At the expense of some complexity in software, the system developed for this thesis delivered the required accuracy without advance scale selection when used to test a wide variety of rocket engines. In order to minimize parts costs, the system was developed as a single-purpose instrument rather than as an adaptation of an existing microcomputer.

The instrument consisted of a mechanical force transducer and a thermocouple temperature sensor, followed by analog amplifying and filtering circuits and a digital processing system. This microprocessor digital system performed analog-to-digital conversion, detection or computation of the values of the five parameters of interest, storage of the digital data representing thrust-vs.-time history, and display (under operator control) of the measured data. Figure 1 shows the relationship among the various components of the system.

Figure 1. System block diagram.

II. DESIGN REQUIREMENTS

A. INPUT CHARACTERISTICS

The engines which this system was designed to test come in a wide variety of powers, sizes, and durations, and have many different variations of thrust with time. Information on the general values of these parameters is not always available before a test, and even if it is not the parameters must be measured to an accuracy of two percent of their value. Consequently, this system was designed to have a maximum error of roughly two percent of the smallest value expected for each parameter. This gave it a performance on larger engines much better than the minimum requirements. The range of variation of each parameter which was used in establishing the design is given in Table I. Some typical shapes for the variations of thrust with time are given in Figure 2.

TABLE I
CHARACTERISTICS OF DESIGN INPUTS TO SYSTEM

Parameter	Units	Expected Minimum	Values Maximum
Peak Thrust	Newtons	6.0	130.0
Average Thrust	Newtons	2.0	75.0
Total Impulse	Newton-seconds	0.50	99.99
Thrust Duration	seconds	0.20	9.50
Delay Duration	seconds	0.00	15.00
Casing Temperature	degrees C	25.0	250.0

Figure 2. Example shapes of thrust-time inputs.

Model rocket engines include a small gas-generating charge for activation of recovery systems, which may go off from 0 to 15 seconds after the propellant has burned out. The "thrust" spike which this produces on a test stand must not be considered when computing total impulse or peak thrust. With some types of engines there is an igniter-produced "thrust" spike prior to actual propellant ignition, and this must be ignored when computing thrust duration and total impulse. The system software had to be designed to perform both of these tasks.

A major consideration in the design of a digital datacollection system is the choice of a sampling rate. This
rate must be at least twice the highest frequency component
in the analog signal being sampled to avoid aliasing. The
sampling rate has a great effect on the amount of memory
required to store the samples and on the technique and hardware used in analog-to-digital conversion. Consequently,
its selection was the first step in the design of the digital
portion of this system. The natural frequency of the mechanical transducer used in this system was about 500 Hz, permitting sampling rates of up to 1000 Hz.

In order to determine the minimum acceptable sampling rate, the thrust transducer (described later) was built and was connected to an amplifier circuit and a variable-frequency four-pole low-pass filter. The direct output of the amplifier was connected to one channel of a Honeywell 906C

Visicorder recording oscillograph, and the filtered output was connected to a second channel. The recorder had flat frequency response to beyond 1000 Hz, and hence did not affect the results in this test. Various engines were fired in the transducer, and the recorder outputs before and after the filter were compared visually. The filter was set at various values from 500 Hz to 200 Hz. No significant change in the shape of the output by filtering was detected for any engine at any filter setting. Clearly the engine thrust variation contained no important information above 200 Hz and could safely be low-pass filtered at this value. A sampling rate of 500 Hz was chosen.

Casing temperature changes much more slowly than the other parameters measured by this system. Typically, it does not begin to rise until after the propellant has burned out, and does not reach its peak value until 30 to 70 seconds later. The sampling rate required for this parameter is not easily compatible with the high rate required for thrust sampling, so an analog peak detection circuit was used to hold the voltage corresponding to peak temperature for later one-time sampling by the digital system.

B. CONSTRAINTS ON PARTS SELECTION

This system was designed to be field-portable, that is, operable from a pair of batteries connected to provide +12 V and -12 V with no more than one ampere of current drain on either battery. In addition, it was desired to minimize

the total parts cost even if this required a modest increase in software complexity and in hardware assembly time.

The voltage requirements posed no great difficulty, except in the selection of the analog-to-digital conversion hardware. Most A/D and D/A converters with the speed and number of bits required use either a +15V or a -15V power supply, or both. A suitable and inexpensive D/A converter was eventually obtained from Burr-Brown Research.

The current requirements dictated that Schottky low-power transistor-transistor logic (LS-TTL) be used in place of standard TTL in the digital circuit. CMOS logic was not used because of its incompatibility with many of the microprocessor system and other major special-purpose chips. The difference in price and speed between LS-TTL and standard TTL was too small to outweigh the major differences in current consumption. Current requirements also determined the choice of a liquid crystal display (LCD) for output rather than lightemitting diodes (LED). Although an LED display would have been substantially cheaper (\$9. versus \$20.) and slightly less complex, a four-digit display of reasonable size would have drawn at least 0.5 ampere and would have been unreadable in sunlight during field use. The reflective LCD that was chosen uses less than three milliamperes and is not affected by sunlight.

There were three major constraints on the selection of the microprocessor: cost, development system support, and complexity. Performance was not a major issue, since this application was neither exceptionally fast nor dependent on large arithmetic computations. Nearly any eight-bit microprocessor would have had adequate performance. At the time that this project was undertaken, microprocessor development system (MDS) support was available at the Naval Postgraduate School for only three CPU chips: the Intel 8080A, the Zilog Z-80, and the Motorola 6800. Because of the complexity of the software required for this project, selection of a CPU not supported by a sophisticated MDS would have been unwise.

The features required from the microprocessor system were: 1) 13 or more I/O ports; 2) a programmable timer; and 3) 128 x 8 or more of static RAM (memory) for scratchpad and stack use. It was determined that such a system using the Z-80 would have used five chips and cost about \$55., while one using the 8080A would have used six chips and also cost \$55. A system using the 6802 (almost pin-for-pin compatible with the 6800) could be assembled with two chips for \$48., and this design was selected.

Parts cost was also a factor in the design of the analog amplifier section of this system, and in the selection of the analog-to-digital conversion technique. In both cases, single modules existed which would have met all of the performance requirements. Instead of a monolithic instrumentation amplifier for \$17., a set of three operational amplifiers (total parts cost \$5.) was used for each transducer. Rather than a fast monolithic 12-bit A/D converter module costing \$85., a good 12-bit D/A converter and a comparator were used

(parts cost \$30.) with idle microprocessor computing capacity being employed to generate successive approximation A/D logic. In both cases, the result was a system which met every performance requirement. The amount of effort expended in wiring and in software development to achieve this, however, was so great that the savings in parts cost was not justified.

Design of the RAM system for storing the thrust data from the analog-to-digital conversion was a final major area where cost and current requirements determined the design.

A 16K x 4 or 8K x 8 memory was required. A static memory of this size using the most economical memory chips available would have cost about \$100. and consumed one ampere. The dynamic memory that was chosen cost \$55. and consumed 0.15 ampere. Once again, these savings were realized at the expense of added software complexity.

C. ACCURACY REQUIREMENTS

Once the magnitudes of the expected inputs were defined, it was possible to calculate the accuracy required of the system as a fraction of full-scale values, and thus the number of bits of analog/digital conversion required.

The accuracy needed in peak thrust measurement was two percent of the minimum expected peak thrust (6.0 N), or 0.12 Newtons. Full-scale was 130 N, so on this basis the least significant bit in A/D conversion had to represent one part in 130/0.12 = 1083. This is 10.1-bit accuracy.

Total impulse is simply the integral (digitally, the sum) of thrust with time, so its error is just the error in thrust multiplied by the duration of the thrust. A small thrust error in a long-burning engine can add up to a large total impulse error. However, if the thrust during this time is much larger than the error, the total impulse error will be only a small percentage. The error effect here depends on the average thrust of the engine. If thrust is measured to an accuracy of two percent of the minimum expected average thrust, then assuming no timer or arithmetic errors the total impulse error can never exceed two percent. Referring back to Table I, 2 percent of 2.0 N is 0.04 Newtons. This is the accuracy of thrust measurement that must be achieved to guarantee accuracy of total impulse to two percent of its minimum expected value, or, $.02 \times .50 = .01 \text{ N-sec}$. As a fraction of peak expected thrust, this requirement is 130/.04 - 3250, or 11.7-bit accuracy. This more stringent requirement supersedes the 10.1 bits needed for peak thrust. A 12-bit conversion was chosen for thrust measurement.

For the temperature system, the maximum acceptable error was 3°C. There were nonlinearities and errors in the sensor itself (discussed later) which could introduce at least 2°C of error, so it was desired to hold A/D quantization error to 1°C or less. Since the maximum value was 250°C, this was one part in 250, or eight bits. For this system, only half of the -5V to +5V range of the A/D conversion input was used,

so relative to the full range nine bits of accuracy were required. Actually, the same twelve-bit system was used here as was used for thrust, and the last three bits were ignored.

Event duration timing in this system was done with a programmable timer driven by the system clock, which was crystal-controlled. The only error here was the 0.002-second quantization error, this being the interval between timer-produced interrupts. This was negligible.

D. NOISE MINIMIZATION

The system developed in this project was intended to be a highly accurate instrument. The accuracy requirements placed on it were such that its analog portion had to be capable of resolving microvolt signals from the transducers, and its digital portion had to have less than one-half bit of error in a 12-bit A/D conversion. This meant that careful attention had to be paid to noise minimization from the beginning of the design process. Reference 1 was a particularly useful source of design techniques for noise reduction. The design goal was a true-RMS noise voltage output of no more than 1/4 of the least significant bit value. For the thrust system, this was 0.6 millivolts. For the temperature system, it was 4.8 millivolts.

The ground system of the transducer and analog portion of the instrument was designed before the rest of the circuit. The entire instrument was built inside a covered metal chassis

to shield the circuits from external electric fields. This chassis was connected at only a single point to the other parts of the instrument's ground system. Ground conductors to all of the elements of the analog system were run from this central grounding point, with no more than two circuit elements being connected in series on the same conductor. This kept noise voltage from being induced in the ground of one element by the return current from another element flowing through the resistance of a shared ground wire.

Within all of the high-gain first-stage amplifier circuits, metal film one percent resistors were used to minimize thermal noise and drift. In addition to their anti-aliasing function, the low-pass filters at the outputs of the transducer amplifiers were used to eliminate high-frequency noise.

The cables between the circuit chassis and the transducers were twisted-pair conductors with braided metal shields. The shields were not used as signal conductors or grounds. They were isolated from system ground at the transducer end and connected to it at the chassis end, inside the chassis. When connected in this manner, the shields minimized noise coupling into the signal conductors from both ground loops and external electric fields.

The external +12V and -12V power supply inputs were bypassed to system ground with several parallel capacitors ranging from 10 microfarad electrolytic to .001 microfarad ceramic, to attenuate power supply noise over a wide frequency range. Within the system, separate heavily-bypassed

+5V and -5V power supplies were used for the digital and analog systems to prevent TTL switching noise from coupling into the analog elements.

In the digital portion of the instrument, a copper-clad circuit board was used to provide a good ground plane, which was connected to the system ground at one point with a large, flat conductor. Flat metal strips were used as digital power buses to provide maximum capacitive coupling to the ground plane, and hence minimum characteristic impedance $Z_0 = \sqrt{L/C}$. These buses were also bypassed to ground with large capacitors. The power leads of the TTL chips were all bypassed to ground with .015 microfarad capacitors to provide current for switching. Each TTL chip was connected to a power bus through its own unshared conductor.

III. TRANSDUCER AND ANALOG SYSTEMS

A. THRUST TRANSDUCER DESIGN

The key step in the design of this instrument system was the selection of a technique for converting rocket engine thrust to an electrical signal. Each of the many types of device that are used as force-to-signal transducers has different requirements for output processing circuitry, so the design of this circuitry must await selection of the transducer. The transducer for this system had to meet the following requirements:

- 1) sufficient output to permit the .04 N minimum detectable thrust element to be converted to one bit in a 12-bit, 10-volt A/D conversion (2.44 millivolts) using an amplifier gain of no more than 1000,
- 2) ability to survive a force of 260 Newtons in case of an engine malfunction (explosion) during a test,
- 3) natural frequency of not less than 500 Hz with a 45-gram engine in place, to guarantee that transducer frequency response effects would not obscure the performance of engines under test,
- 4) ability to withstand prolonged exposure to corrosive engine exhaust gases;
- 5) low power consumption and minimum cost.

Although a wide variety of techniques are available for force transduction, relatively few of them could meet the frequency response and dynamic range requirements of this system. The high cost of suitable commercially-available units made it desirable to use a transducer that could be

built locally. Most such transducers contain a mechanical element which is deflected by the force, with this displacement leading to a change in the resistance, capacitance, or inductance of some attached device or to the deflection of a light beam. Of these techniques, strain gauges (which change resistance) are the least complex and the cheapest. It was decided to try these first.

Many commercial and laboratory force-sensing systems are based on strain gauges, so the techniques for their use are well developed. These gauges are extremely thin grids of copper or constantan which are adhesively bonded to a surface. As the surface deforms under the application of a stress, the gauge metal deforms and changes resistance. The fractional change in resistance, and hence in the output, is proportional to the mechanical strain, $\Delta R/R = g\varepsilon$, where g is the gauge factor of the strain gauge (usually approximately 2.1) and ε is the fractional elongation of the material, or the strain, $\varepsilon = \Delta 1/1$. As long as the thermal expansion coefficient of the gauge material is matched to that of the surface to which it is applied, thermal gradients will have little effect on gauge accuracy. By arranging two or four gauges on the test item so that equal numbers are in tension and compression, and by wiring them in a Wheatstone bridge arrangement, the electrical output of the gauges is maximized and thermal expansion errors are further reduced. This is discussed in detail in Ref. 2.

The mechanical element to which the gauges are bonded totally determines the linearity, magnitude, and frequency response of their output. The shapes that can be used for this element include rings, tubes, rods, octagons, and cantilevers. The rectangular cross-section cantilever is the easiest to analyze and fabricate, so it was the first choice. Cantilevers may be rigidly supported either on just one end (clamped-free) or on both (clamped-clamped). Both types were examined, and the clamped-clamped design was chosen because it had a higher natural frequency for a given level of strain output.

The equation for the stress in a cantilever as a function of its dimensions and material properties and the force F applied at its center was obtained from Ref. 3. Of particular importance is the linear relationship between input (force) and output.

$$\sigma = \frac{3F1}{4bh}$$

The dimensions 1, b, and h are illustrated in Figure 3. Equations were also required which predicted the natural frequency of the beam, since this was a major design parameter. These are given in handbooks such as Ref. 3 only for beams without attached masses, whereas the transducer beam had an engine holder and engine in its center. An approximate solution was developed from the known no-mass natural frequency formula and from the general principle that

Figure 3. Thrust transducer.

TO THE COLUMN TO MOTOR OF THE COLUMN TO MOTOR OF THE COLUMN TO MOTOR OF THE COLUMN TO THE COLUMN TO

natural frequency $\boldsymbol{\omega}_n$ is related to a beam's distributed mass \boldsymbol{m}_b and spring constant K by:

$$\omega_n = \sqrt{\frac{K}{\alpha m_b}}$$
 , $m_b = \rho bhl$, $K = \frac{16 Ebh^3}{l^3}$

where α is a constant. The exact equation for the fundamental frequency of an unloaded clamped-clamped cantilever was obtained from Ref. 3 as:

$$\omega_{n} = \frac{127.6h}{1^{2}} \sqrt{\frac{E}{\rho}}$$

All units are pounds and inches. E is Young's modulus for the material used and ρ is its density.

These equations were set equal, and the value of α was found to be α = .0009827. It was then assumed that when a point mass m_C was added at the center of the beam, the natural frequency would become:

$$\omega'_n = \sqrt{\frac{K}{\alpha m_b + m_c}}$$

By examining the equations for stress and natural frequency together, it is apparent that tradeoffs are required in getting both the desired strain $\varepsilon = \sigma/E$ and natural frequency ω'_n . Increasing Young's modulus by choice of the beam material will increase ω'_n and reduce ε . Increasing beam length 1 will increase ε but sharply reduce ω'_n . Increasing beam thickness h will increase ω'_n but

sharply reduce ϵ . Increasing beam width b will reduce ϵ and not affect ω'_n . In general, high strain ϵ means low natural frequency ω'_n .

Clearly, a minimum width and length beam was desired. However, enough width had to be provided to permit strong bolt attachment to supports at the ends. Also, enough length had to be allowed for development of a reasonable strain at the strain gauges, whose centers could be no closer than about 0.25" to the ends of the beam. A width b = 0.5" and a length 1 = 4.5" were selected on this basis. Using four strain gauges in a Wheatstone bridge with two in tension and two in compression, the output is:

$$\frac{\Delta V}{V_0} = \frac{\Delta R}{R} = g\varepsilon = g\frac{\sigma}{E} = \frac{3Fgl}{4Ebh^2}$$

In order to avoid excessive current drain and reduced gauge lifetime from heating, it was decided to limit the DC bias voltage applied to the bridge to V_0 = 12V. Assuming that an amplifier with gain G = 1000 was to be used on the bridge output, values of thickness h were found for various materials which gave the design condition of $G\Delta V$ = 2.44 millivolts for F = 0.04N = 0.009 pounds.

$$\Delta V = \frac{3FV_0Gg1}{4Ebh^2} = \frac{1530.9}{Eh^2} = .00244$$

Only standard thicknesses (1/8", 3/16", etc.) were considered. Each design was then checked to ensure that the stress was

below the yield stress of the material for $F = 260 \, \text{N}$, and the natural frequency was calculated for a mass $m_C = 60 \, \text{grams}$ at the center of the beam. The results are summarized in Table II.

TABLE II

CHARACTERISTICS OF TRANSDUCER BEAMS WITH CENTER MASS

Material	Yield Stress psi	E psi	$1b/in^3$	Thickness in	Frequency Hz
Aluminum (7075-T6)	67,000	10.4×10^6	.101	.1875	630
				.250	953
Steel (C1020)	48,000	30.0×10^6	.272	.125	559
Magnesium (AZ31B)	24,000	6.5×10^6	.064	.250	773
Titanium (Alloy 16	5) 160,000	16.8×10^6	.164	.1875	775

Although magnesium and titanium beams both were highly desirable because of their natural frequency, it was impossible to obtain a supply of either material. The final design used 0.1875" thick 7075-T6 aluminum, this thickness being chosen rather than 0.25" despite its lower natural frequency to ensure adequate sensitivity. The construction of the transducer is shown in Figure 3. Four Micro-Measurements EA-13-125BB constantan foil strain gauges were used, one on each side of the beam at each end, as close as possible to the clamping points to maximize the strain they saw. The beam could withstand an applied force of 1500 N (350 pounds) before yielding.

After the beam was built, a 48-gram mass was placed in the 12-gram engine holder to give $m_{\rm c}$ = 60 grams, and the holder was tapped with a hammer. The output (after amplification) was observed on an oscilloscope to measure the natural frequency, which is approximately the frequency of the oscillatory response to this "impulse" input. This frequency was 526 Hz, or 83% of the predicted 630 Hz.

As a final test of the beam transducer, it was loaded with varying amounts of calibration weights (up to 18 pounds) and its amplified DC voltage output was measured for each weight. This output was exactly linearly related to the input force.

B. AMPLIFIER AND FILTER DESIGN

The output signal from the transducer strain gauge bridge was a very small voltage--on the order of microvolts normally--superimposed on a 6 VDC common-mode voltage. The analog-to-digital conversion system could handle inputs over the range of -SV to +5V, so to take full advantage of its accuracy considerable amplification of the differential output across the bridge was necessary. The literature on instrumentation-type DC amplifiers [Refs. 4-6] recommends that gains of greater than 1000 be avoided, if possible. Since maximum gain was desirable to permit a high transducer natural frequency, the design problem was reduced to finding the most cost-effective 1000-gain DC amplifier.

There are many figures of merit used to judge the performance of an instrumentation-type amplifier. In this relatively high-gain, low-frequency application, the important ones were the following:

- 1) input impedance (Z_{in})
- 2) input noise voltage
- 3) common-mode rejection ratio (CMRR)
- 4) input offset voltage (V_{OS})
- 5) input offset current (i_{os})
- 6) input offset current and voltage thermal drift.

High input impedance was desired to minimize the current drawn by the amplifier from the transducer. This current could induce an error voltage in the resistance of the strain gauges. Input noise voltage is amplified by the gain of the amplifier and appears at the output, where no more than 0.6 millivolts (RMS) of noise could be tolerated. Assuming that the output was to be limited to a noise bandwidth of 250 Hz, then:

$$V_{n \text{ out}}(RMS) = \sqrt{Gain \cdot Bandwidth} \cdot G_{n} = V_{n \cdot in} \sqrt{Gain \cdot BW}$$

$$0.0006 = V_{n \cdot in} \sqrt{1000 \cdot 250}$$

$$V_{n \cdot in} \leq 1.2 \, \mu V / \sqrt{Hz}$$

Here G_n is input noise power spectral density. The maximum acceptable noise input voltage was 1.2 microvolts per $\sqrt{\text{Hz}}$.

Input offset voltage is the difference between inverting and non-inverting input voltages seen by the amplifier internally when both input terminals are grounded. When multiplied by the gain, it appears as an output DC voltage offset. In order to avoid large output offsets, it was desired that this input offset be no more than two millivolts. More important than the absolute value of this voltage was its variation with temperature. The lowest possible variation was desired, to avoid large drifts in output resulting from small short-term fluctuations in temperature inside the instrument circuit. Input offset current, when multiplied by the equivalent DC resistance of the circuit's inverting input and by the gain [Ref. 4], becomes an output offset voltage, so a minimum value and drift of this quantity was also desirable. As discussed in the calculations for noise input voltage, a gain-bandwidth product of at least 250,000 was required from the amplifier. Since an output voltage range of ten volts was needed, the slew rate S had to be [Ref. 4]:

$$S \ge 2\pi V_{out} F_{max} = .016 \text{ volt/} \mu \text{sec}$$

A high common-mode rejection ratio was desirable to minimize the effects on the amplifier of fluctuations in the DC offset of the transducer output.

Once the figures of merit for selection were established, manufacturers' data was consulted to find devices which met the performance requirements. Those which did so fell into

three categories: operational amplifiers with FET inputs; op amps with supergain bipolar transistor inputs; and monolithic instrumentation amplifiers. An amplifier system made from discrete op amps requires three of these devices, while monolithic amplifiers do the same job with a single (more expensive) chip.

Most of the acceptable op amps and amplifiers were extremely expensive and had long delivery times. On the basis of cost alone, the field was quickly narrowed to the National LM308A bipolar op amp (\$1.25) and the Analog Devices AD521J monolithic amplifier (\$13.). Performance figures for these two devices are summarized in Table III. The LM308A was selected because of its superior noise and offset voltage performance and because it gave a lower system parts cost, even though three chips plus ten resistors and capacitors were required for this approach compared to one chip and two resistors for the AD521J.

TABLE III

AMPLIFIER PERFORMANCE FOR GAIN OF 1000

Device	Z _{in} MΩ	Output Noise mV	Bandwidth Hz	V _{os} nV	V _{os} Drift μV/°C	CMRR dB
LM308A	40	.02	600	0.73	2.0	110
AD521J	3000	1.20	6000	2.00	7.0	110

Once the device to be used was selected, design of the amplifier circuit was straightforward. A standard op amp circuit was selected from Ref. 5 and the appropriate values of resistances were calculated to deliver the required gain. The circuit is shown in Figure 7, Appendix A. This design had the advantage that its input impedance was virtually infinite. Since the inverting and non-inverting inputs go to separate op amps, Z_{in} is twice the impedance from one input to system ground. The circuit amplifies only differential input voltages, V_1 - V_2 , not any common-mode voltage. The gain equation is:

$$A_v = \frac{v_0}{v_1 - v_2} = -(1 + \frac{2R_1}{R})(\frac{R_0}{R_2})$$

It was known that a low-pass filter with DC gain of 2.57 would be used on the output, so the instrumentation amplifier gain needed was 1000/2.57 = 389. Because of the limited selection of resistance values available, a theoretical gain of 40Z had to be used in the final design. Metal film 1% resistors with relatively low values of resistance were used for noise minimization, accuracy, and thermal stability.

The amplifier circuit was followed by a four-pole, 200-Hz Butterworth low-pass filter, which provided antialiasing for the 500 Hz A/D conversion sampling and attenuation of higher-frequency noise. This filter was designed, using the techniques described in Ref. 7, as a cascaded pair

of two-pole active filters. The design DC gains of the two filter stages were 2.235 and 1.152. The filter was made using LM308 op amps, a less expensive version of the LM308A with higher voltage and current offsets. Carbon resistors were used. The precision components used in the instrumentation amplifier were not necessary here because of the low gain and high input voltage levels involved. Based on the measured values of the resistors actually used in this filter, its expected gain was 2.535, giving an overall DC gain for the amplifier system of 1019. The low-pass filter is also illustrated in Figure 7 of Appendix A.

Once the amplifier and filter were built, the system's gain and frequency response were measured by applying a variable frequency sinusoidal signal to the input through a 200:1 voltage divider and measuring the signal and output voltages with an AC voltmeter. An overall gain of 992 was measured, and the 6 dB rolloff point of the four-pole filter was 205 Hz. The strain gauge bridge was then connected through the shielded cable system, and a true-RMS voltmeter was used to measure the noise output voltage after the filter. This was 0.6 millivolt. All values were quite close to the desired performance.

C. TEMPERATURE TRANSDUCER DESIGN

The requirement of measuring the surface temperature of a rocket engine casing to an accuracy of 3°C over the range 25-250°C demanded a second transducer system. There are

only two reasonably simple and accurate techniques for converting a surface temperature to a voltage signal: resistance thermometers (thermistors) and thermocouples. The procedures for using both are highly developed and their errors are well understood. Reference 8 contains a great deal of data on surface thermometry and was used extensively in the development of this transducer.

Most types of thermocouples and thermistors have outputs (voltages or fractional change in resistance, respectively) which are not linearly related to temperature, except over fairly narrow ranges. This makes their implementation in an accurate, wide-range digital system fairly difficult; the conversion from transducer signal to displayed temperature requires some sort of table look-up or a nonlinear conversion equation. The primary selection criterion for this transducer was linearity of output over a wide temperature range. All types of thermistors and thermocouples require analog processing circuitry of roughly equal complexity, and their accuracy and response times depend more on their size and the technique of installation than on inherent properties, so these factors were not considered in the selection.

The data for numerous commercial thermistors and the standard voltage-vs.-junction temperature tables [Ref. 9] for the popular combinations of thermocouple metals were examined for linearity over the desired temperature range. Of these, the chromel-alumel thermocouple was by far the

most nearly linear. It produces an average output of $40.725~\mu\text{V/°C}$ over the range $25\text{-}250\,^{\circ}\text{C}$, with a maximum deviation from linearity of $31.0~\mu\text{V}$ at $120\,^{\circ}\text{C}$. Thus, by assuming that its output and input were linearly related, a maximum error of less than one degree was introduced.

Since it was desired to make the A/D conversion of temperature nine bits with respect to a 10 V output range, the least significant bit (corresponding to one degree C) was $10/2^9 = 19.531$ millivolts. This meant that the thermocouple output signal had to be amplified by $19.531 \times 10^{-3}/40.725 \times 10^{-6} = 479.6$ before conversion. An op amp amplifier system identical in design to that on the thrust transducer was used, with a two-pole low-pass Butterworth filter. Since temperature was to be sampled only one time, anti-aliasing was not a major concern; the principal purpose of the filter was noise reduction and a less expensive one with only two poles was acceptable. The DC gain of a two-pole Butterworth filter is 1.586, so the design gain of the amplifier was 479.6/1.586 = 302.4.

The amplifier/filter circuit is shown in Appendix A, Figure 8. Once it was built, its gain was tested in the same manner as described for the thrust amplifier. A trimming potentiometer was placed in parallel with one of the filter resistors so that overall gain could be adjusted to achieve exactly the required value of 479.6. This was necessary to achieve the desired temperature accuracy. Once this was

done, the output noise after the filter was measured with the thermocouple and cabling connected, using a true-RMS voltmeter. The maximum acceptance noise was 4.8 millivolts; the measured value was 0.3 millivolts.

Thermocouples work on the principle that a junction between dissimilar metals produces a contact voltage which is related to temperature. This occurs at every such junction in a thermocouple system, not just at the sensor junction. Figure 4 shows the connection of a general thermocouple circuit. Each junction may be modeled as a voltage source whose value depends on the materials involved and on the temperature. If intermediate junctions J_3 and J_4 between the thermocouple wires and the copper conductors of the amplifier system are at the same temperature, then their voltages cancel. If reference junction J_2 is not explicitly provided, then since J_3 and J_4 are invisible a virtual reference junction between materials A and B will exist at the amplifier leads, at their unknown temperature.

The input to the amplifier is proportional to the difference in temperature between sensor and reference junctions, not to the sensor temperature alone. Clearly, the reference junction temperature must be known very accurately. This is usually achieved by immersing it in an ice bath, but this was considered impractical for a field-portable system. An alternate solution is to add a system to the circuit which changes output voltage with temperature at exactly the same rate as the reference junction, but in the opposite direction

Figure 4. General thermocouple circuit characteristics.

so that the sum of the two voltages is a constant as ambient temperature varies. This technique was chosen, with the compensation being placed after the amplifier.

The compensation system used was a Yellow Springs Instrument Co. YSI 44202 precision thermistor network, whose output voltage was:

$$V_{out} = 0.805858 V_{in} - 0.0056846 V_{in} T_{T}$$

where T_T is the thermistor temperature. The amplified output of the thermocouple was:

$$V_{out} = 0.019531 T_S - 0.019531 T_R$$

where T_S is the sensor thermocouple temperature and T_R is the reference thermocouple temperature.

The thermistor network was connected to a $V_{\rm in}$ = +5 VDC power supply, and was combined with the thermocouple system output and with a DC source in an op amp summing network. By appropriate choice of the fixed scaling resistors in this summer, these three signals were made to produce the sum:

$$V_{out} = -0.01953 T_S + 0.01953 T_R - 0.01953 T_T$$

The reference thermocouple and the thermistor were then placed close together in a remote section of the circuit chassis so that $T_T = T_R$, leaving the output voltage directly proportional to the sensor thermocouple temperature. This circuit was checked by immersing the sensor in an ice bath (0°C) and adjusting a trimmer potentiometer on the fixed input to the summer until the output was -0.40 V. The sensor

was then immersed in boiling water (100°C). The output was -2.35 V, as predicted. The response was quite rapid.

A non-inverting negative peak detector circuit [described in Ref. 4] was placed at the output of the summer to catch and hold the most negative output value, corresponding to the highest temperature. After some experimentation, it was found that a 25 μ F holding capacitor was required in this circuit to minimize the voltage droop from leakage through the op amp circuit during a 75-second hold time. For most rocket engines, the maximum casing temperature is not reached until 60 to 70 seconds after the start of a test and in these normal cases voltage droop during the remaining 5 to 15 seconds of the holding period was negligible with this capacitor. The compensation system and peak detector are shown in Appendix A, Figure 9.

Following the guidelines in Ref. 8 for minimizing the error in surface temperature measurement, the thermocouple sensor was made from small-diameter (28 AWG) wire. The chromel and alumel wires were soldered close together and parallel for more than 100 wire diameters on a very thin piece of brass shim stock 0.25" square. This piece was formed to the shape of the engine casing surface with the wires paralleling what were estimated to be isotherms, and was covered with insulation before being taped tightly to the surface in a test. No measurements of error were conducted, but despite the care taken in the design an error

of two degrees was the minimum that was expected. This was in addition to the one degree error from A/D conversion.

IV. DIGITAL SYSTEM HARDWARE

A. INTERFACE CIRCUITRY

The signals developed by the thrust and temperature transducers and their associated amplifier, filter, and compensation systems were analog voltages with well-determined characteristics. The primary processing and decision-making done by this instrument was done with digital logic on the digital representation of these signals. A sample-and-hold circuit, a digital-to-analog converter, and a group of comparators, collectively referred to here as the interface circuitry, was used to link the analog and digital systems. Reference 10 was particularly helpful in designing this circuitry.

There were two independent transducer analog signals in this system that required analog-to-digital conversion.

These conversions did not have to be simultaneous, and could have been done with two independent A/D converters, with one converter using multiplexed analog inputs, or with one converter using multiple inputs and outputs. The use of multiple A/D converters or even single monolithic A/D converters was rejected on the basis of parts cost. Multiplexing analog signals to the accuracy required by this system is quite difficult and was not considered desirable. Once the decision was made to use surplus microprocessor computing capacity

to perform A/D conversion with a D/A converter, it became possible to use the last method and put together a conversion system with multiple independent inputs and nonsimultaneous outputs.

The first step in designing the conversion system was selection of a D/A converter. Since only one converter was to be used for both transducers, the specifications were determined by the more demanding application, the thrust conversion. In this case, 12 bits of resolution with 11.7 bits of accuracy were required. This conversion could have taken as long as one millisecond or so; some part of the two-millisecond interval between conversions (500 Hz sampling rate) had to be left for the microprocessor to do other computation. With this amount of time available, the settling time of the D/A converter was not important. The accuracy requirement meant that the analog output of the converter could not deviate from a straight line between its minimum and maximum values by more than 30 percent of the least significant bit voltage, or 0.73 mV. This is called "0.3 LSB linearity."

The combination of 0.3 LSB linearity and operability from 12 V power supplies proved to be impossible to find among reasonably-priced 12-bit D/A converters. The linearity requirement was relaxed to 0.5 LSB, making one converter acceptable: the Burr-Brown DAC-80Z-CBI-V. This device had the additional advantages of being a monotonic converter

rather than a multiplying type, meaning that it did not require an external precision reference voltage, and of being a voltage rather than current output device, meaning that no external buffer op amps were required on its output. It used complementary binary input, with an all "0" digital input giving the most positive analog output and an all "1" input the most negative output. The converter could be connected to produce a variety of voltage output ranges; -5 V to +5 V was the one used. Gain and offset trimiing potentiometers were required to obtain exactly the correct output voltage range. The settling time was three microseconds.

The A/D conversion technique employed was successive approximation. This is commonly implemented in hardware in fast A/D converter chips, but it is quite susceptible to slower software implementation as well. Basically, the microprocessor was used to generate a 12-bit test digital value which was then sent to the DAC. The resulting analog output from the DAC was sent to one input of an analog comparator while the signal voltage being converted was held at the other input. The microprocessor then sampled the output of the comparator and modified the test value according to whether the output was a digital "1" or a digital "0", i.e., whether the test value was greater than the signal or less. The program to do this is described in Chapter V. Twelve such successive tests are needed to perform a 12-bit conversion, requiring about 700 microseconds with the program used in this system.

Multiple independent outputs were obtained by sending the DAC output voltage in parallel to several comparators, with the second inputs to each comparator going to different analog signals. The microprocessor selected the output of one comparator for monitoring at the beginning of each conversion by sending the appropriate digital select code to a gated R-S flip-flop. The R output of this flip-flop caused the thrust comparator output to be transmitted through an AND-OR-INVERT circuit to the microprocessor input port, and blocked the temperature comparator output. The S output did the reverse.

The accuracy of the A/D conversion scheme was measured by applying DC voltages to a comparator input and recording the digital output of the system, then converting this digital value back to its analog equivalent. The difference between the actual voltage and its analog equivalent was the error. Over the full +5 V range of inputs, the standard deviation of error was 5 mV. This corresponds to 11 bits of actual delivered accuracy. While less than the desired 11.7 bits, this was considered still acceptable. The basic reason for this inaccuracy was the width of the comparators' switching transition.

The comparators were LM308 op amps operated open-loop and connected to \pm 5 V power supplies. These devices have an open-loop gain of 3 x 10^5 . This means that their output voltage is greater than the difference between their inverting and non-inverting input voltages by this factor, up to

the limiting point where the output equals a power supply voltage. The output will thus swing over its full range of ten volts in response to a change of 10/3 x 10⁵ = 0.33 mV in the differential input voltage. Since these comparators were connected to TTL-compatible circuitry, a feedback diode was added to limit the negative output to -0.3 V. The slope of this diode's forward-bias characteristic caused a broadening of the comparator's transition region between output levels. These comparators were connected with the non-inverting input grounded through a resistor and the inverting input connected to the two voltages being compared through identical resistors. This is equivalent to connecting each input to one of the voltages, and it eliminates the error effects of offset currents, as discussed in Ref. 4. The switching time of the comparator was about ten microseconds.

Successive approximation A/D conversion is extremely dependent on having the voltage under conversion held constant to within one or two LSB throughout the process. If this is not done, gross errors may result. This was not a problem with the slowly-changing peak detector output from the temperature transducer, but the thrust transducer voltage could change so rapidly that a sample-and-hold circuit was necessary between it and the A/D conversion system. What was required was a sample-and-hold having less than one LSB (2.44 mV) droop during the two-millisecond interval between thrust voltage samples, and having acquisition and settling times of a few microseconds or less. A Datel SHM-LM-2 was

available and met all of these requirements, so it was used. With a 1000 pF holding capacitor, this device had an acquisition time of six microseconds (to 0.01%), a settling time of 0.8 microseconds, and a droop of 0.1 mV in 2 milliseconds. A polystyrene holding capacitor was used to minimize errors due to dielectric absorption.

The interface circuitry is illustrated in Appendix A, Figure 10.

B. MICROPROCESSOR AND MEMORY SYSTEMS

The key elements of the digital portion of this system were the Motorola 6802 microprocessor and the MOS Technology 6530-002 input/output/timer chip. The remaining major elements of the digital system provided either memory or input/output support for these two devices.

The 6802 is an eight-bit microprocessor with an address space of 64K bytes (16 address lines), an on-chip RAM memory of 128 bytes, and an on-chip clock oscillator which permits clock rates of up to one megahertz, depending on the value of an external crystal. It has the same instruction set as the Motorola 6800 and is almost pin-for-pin compatible with it. It requires only a +5V power supply. The microprocessor and its supporting circuitry is shown in Appendix A, Figure 11.

Proper operation of the 6802 was found to depend on close adherence to the correct power-up sequence. The RESET input had to be held below 0.8 V for at least 20 milliseconds after

the chip's V_{CC} power supply went above 4.75 V, and then had to transition sharply and without oscillation to +5 V. This was accomplished with a comparator circuit identical to those described in the previous section of this chapter. A constant -2.5 V was obtained from a resistive voltage divider connected to the analog circuit -5 V supply and applied to one comparator input, while the second input was obtained from a series RC circuit connected between the digital +5 V supply and ground. This circuit took 30 milliseconds to charge to +2.5 V after digital power was turned on, at which point the comparator output went high, setting the 6802 RESET.

The 6530 is a multipurpose microprocessor support chip. It has 64 bytes of RAM and 1024 bytes of mask-programmed ROM (neither of which were used in this system), and a programmable timer. It also has 16 input/output ports, arranged in two groups of eight called peripheral registers A and B (PA and PB). Each individual port of each register may be set up as a direct input or as a latched output by writing a "9" or a "1", respectively, to the corresponding bit of two registers called data direction registers A and B (PAD and PBD). Each of these four registers has a unique address derived from the chip's ten address lines and two chip select lines. Three of the I/O ports (PB5-7) were used as chip selects or as interrupt outputs, leaving 13 ports available for this system.

The 6530's timer is a series of eight registers located at adjacent addresses. The timer counts down for a number

of clock cycles equal to 1, 8, 64, or 1024 times the 8-bit value loaded in the appropriate register, and can generate an interrupt on the IRQ pin (PB7) when the count reaches zero. It was used in this system to provide a master eventtiming reference by generating a non-maskable interrupt (NMI) to the microprocessor every two milliseconds. This 6530 IRQ pin was connected to the NMI input of the 6802 through a one-shot set to provide a five-microsecond low pulse. Considerable difficulty was experienced when interrupts were applied to the microprocessor directly rather than through a short-pulse one-shot. The 6802 would often execute the register-stacking operations of its built-in interrupt service routine, reach the first step of the software interrupt service program and then repeat the register stacking if the interrupt was still set. If the interrupt source was a type that remained set until cleared by a command in the service program, the 6802 remained locked in this cycle indefinitely.

The 6802 and 6530 are designed to drive a maximum of one TTL unit load on each pin. Those 6530 I/O pins which were used for output, and several of the 6802 address and control signal pins, had to be connected to larger loads than this. These pins were buffered with 74LS367 non-inverting buffers to increase their drive capacity to five unit loads.

The program memory for this system was quite simple.

The 128 bytes of RAM which were built into the 6802 were used for stack and for program working storage. This RAM was located on "page zero" of the microprocessor's address space,

at addresses 0000-007F. The overall map for all of this system's memory, and for the various memory-mapped I/O and timer registers, is presented in Table IV. The operating program was stored in two 2708 UV-erasible programmable read-only memory (EPROM) chips, each having a capacity of 1024 8-bit bytes. These were wired to be at the top of the address space, at F800-FFFF. Their requirement for +12 V, +5V, and -5 V power supplies was not a problem since these voltages were already required by several other circuit elements. The memory circuit for this system is illustrated in Appendix A, Figure 12.

TABLE IV
SYSTEM MEMORY MAP

Address		Chip	Function
START	END		
0000	004F	6802	RAM; working memory
0050	007F	6802	RAM; stack
1340		6530	Peripheral register A; output
1341		6530	Data direction register A
1342		6530	Peripheral register B; input
1343		6530	Data direction register B
1344	134F	6530	Timer registers
13C0	13FF	6530	RAM; not used
2000	5FFF	2117	Dynamic RAM; data storage
F800	FBFF	2708.	EPROM-1; program storage
FC00	FFFF	2708	EPROM-2; program storage

The original design of this instrument included a requirement that all of the thrust A/D conversion output data be stored in memory. This data was to be used in several ways. The first was to compute corrections to the thrust and total impulse data to account for the effects of engine propellant weight loss during a test. When the thrust transducer is placed flat, engine weight and thrust act in the same direction and are indistinguishable. The weight loss during a test can be as great as 0.6 Newton for large engines, and this can integrate to a substantial but predictable total impulse error. The error can be reduced by placing the transducer on its side, so that the weight and thrust vectors are perpendicular and the weight loss changes only a torsional force, to which the strain gauge bridge is insensitive. A more flexible approach, and the one which was desired, is to measure the amount of weight loss by comparing the transducer zero outputs before and after a test. Using this, a linearlyvarying correction (zero for initial thrust, maximum for final thrust) can be applied to each stored data point and the total impulse and peak thrust can be recalculated from the corrected data.

Other plans for the stored thrust data included using it to generate a video output of thrust versus time on either an oscilloscope or a television-type display, or both. None of these uses for the data ere implemented by the time that this report was written, although all were still under development. Storage of thrust data was not necessary for performance of the other instrument functions described in this report.

Since this system was required to take 500 samples of thrust per second for up to 9.5 seconds, 4750 12-bit data points had to be stored. The reasons for using dynamic rather than static memory for this were discussed previously. The most economical dynamic RAM available was the Intel 2117 $16K \times 1$ chip. Since the thrust data was already available in four-bit words as a result of the A/D conversion process, it was decided to use four of these chips to form a $16K \times 4$ memory. Accomplishing the required data storage used $3 \times 4750 = 14,250$ bytes of this:

Dynamic memory requires periodic refreshing to maintain its data. The 2117 chip is described in Ref. 11 as being arranged internally in a 128 x 128 array, and a refresh operation requires only that each of the 128 row addresses be written to every two milliseconds. The chip is a 16-pin package with only seven address input lines. These are multiplexed, serving as row address inputs during the first part of a read or write cycle and as column address inputs during the second part, giving effectively the 14 address lines required by a 16K memory. The refresh control and the address multiplexing was accomplished with a single dynamic RAM control chip, the Intel 3242. This took in 14 address lines, a clock, and a refresh enable line, and provided all the necessary address data to the 2117 chips for both refresh and normal read-write operations.

The 2117 required two timing inputs not provided by the 3242: row address strobe (RAS) and column address strobe (CAS). These enabled the chip to distinguish whether its address inputs were to be interpreted as row or column addresses. Both must appear with the proper time relationship during each read or write operation. They were derived from 6802 address and clock outputs, and effectively served as chip selects since they were gated so that they reached the memory chips only when the memory address was on the address bus. The 2117 has separate data inputs and outputs, and it was found that an extraneous signal appeared on the output in response to an address input regardless of the state of the WE read-write control. Consequently, the data input and output could not simply be connected directly to the system data bus; each had to be isolated by a tri-state buffer which was enabled by $\overline{\text{WE}}$ (for input) or by $\overline{\text{WE}}$ complemented (for output).

C. INPUT/OUTPUT CIRCUITRY

At an early stage of this system's design it was decided to make every effort to squeeze the required input and output (I/O) functions into the 13 ports available on a single 6530 chip. This decision was made to limit parts cost; it led to software complexity and debugging problems that more than offset the small savings in parts. The 13 I/O ports were allocated as follows:

PBØ input from comparators

PB1-PB5 input from 16-key keyboard

PAØ-PA2 routing control for output data

PA3 sample-and-hold control

PA4-PA7 output data to DAC, LED, LCD

The input from the comparators, PBØ, was simply wired to the output of the comparator AND-OR-INVERT circuit discussed in section A of this chapter. The PA3 output for sample-and-hold control was wired directly to the appropriate pin on the SHC chip. The remaining I/O functions require more explanation. The I/O circuit is shown in Appendix A, Figure 13. The IC numbers used hereafter refer to this drawing.

A 16-key unencoded, undebounced hex keyboard was used to select among the various operating modes and output data displays of this system. These keys were each SPST momentary switches, with one side of each tied to +5V and the other to one of the 16 inputs of a Harris HD-Ø165 keyboard encoder. Depressing a key pulled the corresponding encoder input high; the required pull-up resistors were built into the encoder. It also caused the encoder STROBE output to go low, setting a flip-flop (IC34) which was connected through a one-shot to the IRQ interrupt on the 6802 microprocessor. The 6802 looked at the keyboard output only in response to this interrupt, and cleared the interrupt flip-flop as part of its response. The four outputs of the encoder were held in latch IC35, whose enable circuitry allowed it to reject keyboard

outputs resulting from the simultaneous depression of two keys. This latch was reset only by the depression of a new keyboard key. Key debouncing was accomplished with a software wait loop.

Three single light-emitting diodes (LED) were used in this instrument to indicate its present status, and a four-digit liquid crystal display (LCD) was used to read out test data. The LED's were labeled TEST, CLEAR, and CALIBRATED, and their use is explained in the next chapter. They were driven by three of the seven outputs of a standard common-anode open-collector decoder-driver chip (IC32). The hex inputs to the driver required to achieve each desired combination of status lights are listed in Table V. These hex inputs were held for the decoder by a four-bit latch (IC36) which was reset only when a new sequence of status lights was commanded by the microprocessor.

The output data from the system's software was routed in four-bit words on I/O lines PA4-PA7 to eight possible destinations. These destinations were the four LCD digits, the 12-bit (three-word) input to the D/A converter, and a mixed destination which included a gated flip-flop for comparator selection and the LED decoder-driver. The selection of which of these destinations was to receive the data was made by output lines PAØ-PA2, which were decoded into eight lines by a three-to-eight line decoder (IC40) and were then used as digit or chip selects or latch enables.

TABLE V
DECODING OF LED/COMPARATOR SELECT LINES

HEX Inputs		D Select			tor Selected
	Test C	lear Ca	Tibrated	Thrust	Temperature
1,3,7	off	on	off	off	off
2	on	on	off	off	off
4,9	off	on	on	off	off
5	off	off	on	off	off
6	on	off	on	off	off
8	on	on	on	off	off
A	on	off	off	off	off
В	off	off	off	off	off
С	off	on	on	off	on
D	off	off	on	on	off
E	on	off	on	off	on
F	off	off	off	on	off

A Schottky TTL decoder was used to ensure that the enable/select lines were stable before the data was sent to its destination. The data and select outputs left peripheral register A of the 6530 simultaneously, and the data lines were delayed by two 74LS367 non-inverting buffers to avoid a possible race condition. The decoding of lines PAØ-PA2 is described in Table VI.

TABLE VI
DECODING OF DATA ROUTING CONTROL LINES

PA2	PA1	PAØ	Data Destination
Q	0	0	low word of D/A converter
0	0	1	middle word of DAC
0	1	0	high word of DAC
0	1	1	LED/comparator select
1	0	0	LCD digit 2
1	0	1	LCD digit 1 (LSD)
1	1	0	LCD digit 4 (MSD)
1	1	1	LCD digit 3

The liquid crystal display was a Timex T1001A reflective type with four 0.5" seven-segment characters. LCD's require excitation of each segment and a common backplane with a 30-100 Hz square wave alternating between 0 and 5 volts. A segment that is to be "on" is fed a signal 180° out of phase with the backplane excitation, so that the net field across it varies from +5V to -5V. An "off" segment is excited in phase with the backplane. A Siliconix DF411 four-digit LCD decoder-driver was used to provide the proper AC excitation to the display. This chip had four BCD data input lines, plus four digit-select inputs to select which of the four internal seven-segment output latches were to receive the decoded result of the input data.

The twelve bits of digital data required as an input by the D/A converter were sent to the converter in three

four-bit words because of the limited number of I/O ports available. These words were held by three four-bit latches (IC37-39), each of which was enabled separately by the appropriate output of the enable decoder. This arrangement saved using a second 6530 I/O chip to provide the 12 bits in parallel, but made the successive-approximation A/D. software somewhat more complex.

V. SYSTEM SOFTWARE

A. STRUCTURE AND GENERAL FEATURES

The software which this instrument used to perform its basic functions, not including video displays or weight loss corrections, required approximately 1450 bytes. It was organized into a main operating program, seven subroutines, two interrupt service routines, a power-up routine, and nine minor programs. Each of these was written in the 6800 mnemonic assembly language and was compiled and debugged separately on a Tektronix 8002 microprocessor development system (MDS). Reference 12 was used extensively in developing the software. A listing of the programs is provided at the end of this report.

Each of the 16 keys on the input keyboard commanded the instrument to take a particular action or display a particular piece of data, as shown in Table VII. Three of these actions were not yet implemented at the time this report was written. Of the remaining 13 keys, two called the main operating program (with different input data), one was a "stop" key, one called the "zero-memory" subroutine, and each of the other nine called a different minor program. In general, functions which were used in several different operating modes of the system, such as averaging, A/D conversion, and hex-to-BCD conversion, were implemented as subroutines. Only one of these was used directly as a response to a

key input. Key response was accomplished with individual programs, some of which did little more than set up data for a subroutine, then call it. These programs could actually be thought of as subroutines themselves, since each ended with an unconditional jump back to the keyboard input routine.

TABLE VII

FUNCTIONS OF INPUT KEYS

Programs Whose Names are in Parentheses not yet Written

Key	Program Called	Function
0	KEYIN	Stop program in progress and wait
1	OPER	Start an engine test, no temperature
2	OPER	Start test, measuring temperature
3 .	CALSET	Set up for calibration
4	CALIB	Accept calibration
5	DDTHST	Display one thrust A/D output
6	DDTEMP	Display one temperature A/D output
7	DTHST	Display peak thrust to 0.1N
8	DIMP	Display total impulse to 0.01N-sec
9	DBTIM	Display burn time to 0.01 sec
A	(DTV)	Display thrust curve on TV
В	DTEMP	Display peak temperature to 1°C
С	(APCOR)	Apply weight-loss correction
D	(DOSC)	Display thrust curve on oscilloscope
E	DDTIM	Display delay time to 0.01 sec
F	ZERO	Clear all RAM

When power is applied to a 6802 microprocessor and the proper timing is followed on its RESET pin, the chip goes to address locations FFFE and FFFF for its startup routine vector. This vector is simply the address of the first step of the power-up program routine. This routine, entitled PWRUP in this system, must start with a CLI (clear interrupt flag) command and should set the initial value of the stack In this system, it also temporarily disabled timer interrupts, set the data direction registers (PAD and PBD) of the 6530 for input or output as appropriate, and cleared all static and dynamic RAM. Dynamic memory requires an initial clearing or refresh before it can be used after power is first applied to it. The PWRUP routine turned on the CLEAR LED as its last step (leaving the other LED's off), indicating that the RAM was clear of all test data. system then entered a loop where it waited for a keyboard input.

Depressing any key on the instrument keyboard caused an IRQ interrupt to be sent to the 6802. In response, the 6802 went to addresses FFF8 - FFF9 and found the vector for the IRQ service routine, which was entitled IRQRES. This routine began with a one-millisecond wait loop to give the key switch "ringing" time to damp out. It then stored the four 6530 input bits PB1 - PB5 which contained the output from the keyboard encoder in memory location $\emptyset\emptyset46$. If the key input was the stop command (key \emptyset) or the zero-memory command (key F), the routine forced an immediate return to the KEYIN

keyboard response routine to do this and terminated any other action that the instrument had been doing. Otherwise, IRQRES simply returned the system to whatever it was doing before the interrupt, and the new mode action was not taken until the next time the system returned normally to KEYIN.

The KEYIN routine used an action pointer table technique [Ref. 12] to develop responses to the key input commands. This routine compared the contents of address 0046 (filled by IRQRES) to those of address 0049, the last command executed by the system. If they were the same, it did nothing. This meant that in order to repeat a particular key action, some other key (generally the "stop" key, key \emptyset) had to be used in between. If the two memory location contents were different, indicating that an unexecuted command was pending, then the key command (multiplied by 3) was used as an offset for an indexed-address jump into an action pointer table entitled VECTOR, which started at address FCØØ. This table contained unconditional jump instructions, directing the system to the appropriate programs for response to each key. For example, if key 5 was pressed, the system jumped to address $FCØØ + (3 \times 5) = FCØF$, where it found the command JMP FBAØ telling it to jump unconditionally to FBAØ, the starting address of the program responding to that key.

The accuracy of the time-based measurements made by this instrument (burn and delay times and total impulse) depended on having an accurate timing reference available to trigger an A/D conversion exactly every two milliseconds.

The easiest way to do this was to use the 6530 programmable timer to generate a non-maskable interrupt to the 6802 at this interval. The NMI interrupt sent the 6802 to addresses FFFC-FFFD, where it found the vector sending it to the response routine for this interrupt, NMIRES. This routine began by reloading the counter so that another interrupt would be generated in 2.00 milliseconds. It then enabled the RAM refresh input to the 3242 dynamic RAM controller for 128 microseconds, giving it time to automatically generate all the signals necessary for a refresh cycle. If a mode was being executed which required A/D conversion (keys 1 through 6), the program jumped to the ADC12 A/D conversion subroutine before returning from the interrupt. Otherwise it returned from interrupt directly at this point.

Because this system had only 48 bytes of RAM available for stack and these bytes were located just above important program memory, considerable care was taken to ensure that the stack did not overflow. The 6802 uses seven bytes of stack in responding to an interrupt and three bytes to jump to a subroutine, so this limited the depth to which subroutines could be nested, particularly in the interrupt service routines. Several early versions of this system's software overflowed the stack. Such overflows were not possible with the final design.

Although many sections of this system's software were debugged individually on the Tektronix MDS, several of the major interactions between them were not. These interactions

were the ones which depended on the occurrence of NMI timer interrups and real-time thrust inputs. MDS emulation provides line-by-line traceouts of the status of every CPU register as each program instruction is executed, but to provide this and other valuable debugging services it must slow the execution speed by a large factor. Interrupt inputs to the MDS are enabled for only a small fraction of each instruction execution cycle, so the MDS seldom sees the negative-going edge it requires to sense an NMI interrupt. This meant that the real-time NMI-dependent processes of the system could not be emulated. A vast amount of time was required to debug these subroutines and interrupt interactions using a Paratronics 532 Logic State Analyzer. This device permitted real-time operation of the system with its own CPU in place, rather than the emulator plug required by the MDS, but it provided access only to the contents of the external pins of the CPU (address and data bus) and not to internal registers. It allowed no interaction for modifying the contents of memory, and could provide only 256 clock cycles of traceout at once.

B. SOFTWARE A/D CONVERSION

The hardware required to accomplish a 12-bit successive-approximation A/D conversion using software and a D/A converter has been described previously. The function of the software was to generate the proper 12 bits of data to send to the converter, working with one four-bit word at a time

while leaving the other eight bits unchanged. The software also generated control signals for the sample-and-hold circuit and packed the A/D conversion output from the last four bits of three separate bytes into one and a half consecutive bytes.

All of the A/D software was contained in one subroutine entitled ADC12, which occupied 131 bytes and required 715 microseconds to perform a conversion. This program operated in straight binary, converting the digital test values to the complementary binary required by the DAC before sending them out, then changing the final result back to the straight binary used in the rest of the system. ADC12 could be called repeatedly only by the NMIRES interrupt response program, so the timer NMI interrupt had to be enabled by any program which required more than one A/D conversion. These programs generally used a WAI (wait for interrupt) command where the A/D data was required so that their execution was stopped at this point until the data was available from ADC12 after the next timer interrupt.

The ADC12 subroutine began by sending a "sample" command to the SHC for 14 microseconds, then a "hold" command. Next it set the initial digital signal to the DAC to 01111..., corresponding to a 0.00V analog output since the DAC operated over a -5V to +5V output range. It then entered a loop where it worked on only one four-bit word (starting with the most significant four bits), leaving the other two words set at

their initial values. Straight binary will be used hereafter to describe the functioning of this program.

The ADC12 program set the initial value of the current four-bit test word to 1000, and set a rotating-bit word to 0100. It sent the initial test word to the appropriate latched DAC input by adding the necessary final three bits (PA2 - PAØ) to enable the proper latch. After 45 microseconds of executing other instructions, it examined the output of whichever comparator had been enabled by the program which had called ADC12. An output of "1" indicated that the DAC analog output was less than the signal being converted. this case, the rotating bit was ORed to the test word, increasing its analog equivalent voltage. If the comparator output was "Ø", the rotating bit was subtracted from the test word instead. In either case, the rotating bit was then shifted one position to the right and another conversion cycle was started. After every fourth cycle, a new word was begun.

The branches possible in a four-bit straight binary successive-approximation A/D conversion are illustrated in Figure 5.

C. MAIN OPERATING PROGRAM

The main operating program of this instrument, entitled OPER, was the program used during an engine static test.

Its function was to recognize the occurrence of such events as start of thrust, thrust termination, and gas-generation

Figure 5. Four-bit straight-binary successive approximation A/D conversion. Upper branches taken when comparator output is θ .

charge actuation regardless of the shape of the input thrust variation. It computed the value of burn and delay times and peak thrust and added thrust outputs to accumulate total impulse, all based strictly upon the input values it received every two milliseconds from the ADC12 subroutine. Depending on whether it was called by depressing input key 1 or key 2, it either ignored the temperature peak detector or accepted its output once at the end of a test, respectively. This program was 365 bytes in length. Its operating time varied widely during the course of a single engine test because of its numerous conditional branching instructions, but it was always short enough that its operation (including an A/D conversion) was completed in the two-millisecond interval between NMI timer interrupts.

The flow diagram for OPER is shown in Figure 6. The first action of the program was to check memory location \$\textit{\textit{0}}\text{4E}\$ to see if a calibration had been performed since the system had been turned on. A calibration, which used the CALSET and CALIB routines described in the next section of this chapter, caused a flag value to be placed in this memory location. Only if a calibration had been performed would the program permit initiation of a test. It indicated that a test was in progress by turning off the CLEAR LED and turning on the TEST LED. It then enabled the thrust comparator for the A/D conversion, and averaged the result of eight conversions to obtain a value of thrust transducer output corresponding to zero thrust input. This feature

Figure 6. Flowchart of main operating program.

Figure 6. (Continued)

Figure 6. (Continued)

eliminated the need to carefully trim the transducer analog output to -5.000 V before each test, since throughout the rest of the program this zero value was subtracted from the A/D output to obtain the actual net thrust.

After the preliminary preparations for a test were completed, the OPER routine waited for a thrust input of 0.50 N or greater lasting at least three timer periods (0.006 seconds) before it decided that a valid test had begun. Setting a threshold in this manner prevented a single large noise spike before engine ignition from erroneously causing the program to begin accumulating durations and total impulse. The time at which this threshold was satisfied was declared by the program to be time zero for computing durations, and for the next 9.50 seconds or until it decided engine burnout had occurred (whichever came first) it accumulated thrust outputs for total impulse and examined them to detect a valid peak value.

The peak value detection logic rejected any peaks which occurred more than 0.20 seconds after a previous peak of 4.5 Newtons or greater, but accepted all others. "Peaks" rejected by this criterion were almost always just spurious output spikes, caused by ejection of an engine casing by its gas generation charge when there was no delay between burnout and actuation of this charge. The most recent valid value of peak thrust was placed in addresses AB2C and AB2D during each cycle of OPER until burnout, at which time the updating was stopped.

During each cycle of the program between the times when it recognized ignition and burnout, the net thrust was added to a three-byte memory location where total impulse was accumulated. The design limit of this system was 99.99 N-sec. of total impulse. Since 99.99 Newtons was 3150 A/D counts and one second was 500 A/D cycles, the maximum value which this accumulation could reach was 500 x 3150 = 1.575×10^6 , or 21 bits. The net thrust was obtained by sending the ADC12 direct output to the NETTST subroutine, where the zero reference value was subtracted.

The burnout detection logic defined burnout as that moment when the thrust output of an engine first dropped below 1/16 of the peak value recorded by that engine. This is a more flexible criterion than the fixed threshold value used to define ignition. At the moment when burnout was recognized, the total impulse value accumulated was sent to the DIMP subprogram to be converted to a value in N-sec. and then to be displayed. The value of the A/D conversion cycle counter was also sent to a memory location to be remembered as the burn time.

After burnout was sensed, the program waited for the occurrence of a thrust spike at least 0.50 N greater than the threshold used to determine the burnout. This was presumed to have come from the activation of the gas-generation charge on the engine, and its time of occurrence minus the burn time of the engine was stored as the delay time. At this point, if the without-temperature mode of OPER was the

one in progress, the test was considered to be terminated and the TEST LED was turned off.

If the with-temperature mode was in progress, or if no post-burnout thrust spike occurred, OPER continued until 73 seconds after engine ignition before terminating. Temperature data, if required, was taken just before termination by averaging eight samples of the output of the peak detector circuit. This data was then converted to degrees Centigrade and displayed on the LCD by the DTEMP subprogram.

After each test the peak thrust, burn time, delay time, total impulse, and (if used) peak temperature were available for display on the LCD by pressing the appropriate input key. The instrument could then be prepared for a new test by using key F to clear all RAM locations except those five where the calibration data was stored. Doing this caused the CLEAR LED to come back on and left the CALIBRATED LED on.

D. SUBROUTINES AND MINOR PROGRAMS

Up to this point only the two principal programs used by this system, plus the interrupt response and power-up routines and a few subroutines, have been described. The remaining subroutines and minor subprograms were either quite straightforward or very short and will be discussed only briefly.

The CALSET subprogram was entered in response to key 3. It enabled the NMI interrupt in order to gain access to the A/D subroutine, then averaged eight A/D outputs using the

AVG8 subroutine. This result was used as the zero-thrust reference value in the CALIB subprogram.

The CALIB subprogram was entered in response to key 4, and was meant to be preceded by CALSET. Before selecting this routine, but after executing CALSET, a 10.00 Newton calibration weight was placed on the thrust transducer. CALIB then averaged eight A/D outputs using AVG8 and subtracted from this result the zero-thrust reference value developed in CALSET. The difference was the net output for 10.00 N of thrust/weight. This calibration value was stored in a section of RAM that was not erased between static tests, and was used to convert A/D outputs from the operating program into units of thrust or impulse. Upon completion of CALIB, the CALIBRATED LED was turned on.

The HEXBCD subroutine accepted two bytes of hexadecimal data as an input and, using the binary-to-BCD conversion algorithm developed in Ref. 12, converted this data to a four-digit BCD result. The total impulse display program (DIMP) could conceivably generate a hex quantity which would overflow four BCD digits, so HEXBCD included a provision to generate an output of 9999 if too large a hex input were provided. It put the BCD output in the high four bits of four data words, then added the proper data routing control bits to the end of each word to send it to the appropriate LCD digit.

The DTHST subprogram was entered in response to key 7.

It took the peak thrust A/D hex value developed by the

operating program during a static test and multiplied it by 100 with the MULT subroutine, then divided it by the calibration value with the DVID subroutine. The result was the hex value of peak thrust in tenths of Newtons. This was then displayed using HEXBCD.

The DTEMP subprogram was entered in response to key B.

It divided the 12-bit A/D count resulting from conversion of the peak detector output during a test by approximately 8.

This made each bit of what remained equal to one degree C., so the quotient was converted by HEXBCD and displayed.

The DIMP subprogram was entered in response to key 8. It started by doubling the hex value accumulated by the operating program in the three-byte total impulse memory. This converted the value to units of bit-milliseconds. This was divided by the calibration, which had units of bits per 10 N, putting the quotient in units of 0.01 N-sec. This was sent to HEXBCD for conversion and display.

The DBTIM (key 9) and DDTIM (key E) subprograms were combined since their function was virtually identical. They converted the burn time and delay time, respectively, that had been accumulated by the operating program into units of 0.01 second and sent them to HEXBCD. This conversion was accomplished by dividing five into the respective counts of NMI interrupts, which had been incremented by OPER every 0.002 second.

The DDTHST (key 5) and DDTEMP (key 6) subprograms were also so similar that they were combined. They provided an

LCD output of the direct, unconverted result of one A/D conversion of the thrust and temperature transducer outputs, respectively. These programs simply enabled the appropriate comparator, called the ADC12 subroutine once, then sent the result to HEXBCD.

The MULT and DVID subroutines provided 16 x 24-bit integer multiplication and 24/24-bit integer division, respectively, for use throughout the program. Both used standard algorithms taken from Ref. 12. Considerable care was taken to set up the arithmetic operations required by this system so that they could be performed in integer arithmetic rather than floating-point.

VI. CONCLUSION

The objective of this project was to develop a microprocessor-based instrument for accurate static-test measurement of five performance parameters of small solid-fuel rocket engines. Maximum and minimum design values for these parameters and maximum allowable errors were established to define the performance required from the system. It was then designed and built with the additional constraints that it have minimum parts cost and that it must operate from two 12-volt batteries and draw no more than one ampere from either. The final design drew 0.69 ampere from +12V and 0.18 ampere from -12V, and had a 1979 parts cost of about \$350.

In the process of building this instrument and debugging its 1450 bytes of software, it became apparent that major simplifications of the software could have been achieved by using slightly more expensive and sophisticated parts.

Nevertheless, the system was eventually made to operate exactly as desired, displaying the values of the five parameters one at a time on a four-digit liquid crystal display after each static test.

A wide variety of solid-fuel model rocket motors were static tested to verify the instrument's performance. Every feature of the system functioned as designed on every test. Static calibrations proved that the system thrust and temperature transducers and its A/D conversion routine delivered satisfactory static accuracy. There is no such thing as a precision rocket engine which could be used as a realistic dynamic reference source, so the real-time accuracy could only be checked approximately. This was done by recording the analog transducer output signals on a chart recorder during a static test and measuring them to estimate the values of the five parameters. These values were in excellent agreement with the values then presented by the system on its LCD.

The instrument developed in this project made extensive use of the arithmetic and decision-making capabilities of a microprocessor to deliver accurate measurements with relatively inexpensive hardware requiring minimal adjustment by the operator. These measurements were accurate regardless of the shape of the input signal as long as this signal was within the design limits of the system.

This instrument may be modified to test engines of up to 1000 Newtons of peak thrust and 1000 Newton-seconds of total impulse by replacing resistor R in the thrust amplifier circuit (Figure 7) by a 2000 ohm resistor and by replacing the 10.0 N calibration weight with a 100 N weight. In this case, the thrust data output will be in whole Newtons and the impulse data in tenths of Newton-seconds. This will degrade the accuracy for tests of small engines.

APPENDIX A. CIRCUIT SCHEMATICS

Figure 7. Thrust transducer amplifier and filter circuit.

Thermocouple amplifier and filter circuit.

A Second Control of Alberta

T.E.

Figure 9. Thermocouple compensation and peak detection circuit.

THIS DOT NOT NOT WE USE THE PRACTICABLE.

THE CONTROL OF TAGES WHICH DO NOT THE CASE OF TAGES OF TA

Figure 10. Digital interface circuit.

O A BOT O HOT

Figure 11. Microprocessor and its support circuitry.

Figure 12. Memory system.

SALAN DEGLE LANSEY.

Figure 13. Digital input/output circuit.

APPENDIX B. INSTRUMENT OPERATING INSTRUCTIONS

- 1. Apply external +12V and -12V power to the system.
- 2. Turn on the switch to provide internal +5V power to the digital circuits. The CLEAR LED should come on and the LCD should read 0000.
- 3. Trim the BRIDGE NULL potentiometer while monitoring thrust transducer output voltage until this voltage is slightly above -5.00 V.
- 4. Place the temperature sensor in an ice bath and trim the TEMP NULL potentiometer while monitoring temperature transducer output voltage until this voltage is -0.400 V.
- 5. Place the thrust transducer flat and press key 3 to set up for calibration.
- 6. With the thrust transducer still flat, place the 10.0 N calibration weight in the engine holder, wait a few seconds, and press key 4. The CALIBRATED LED should come on.
- 7. Place the thrust transducer on its side and clamp it securely to an extremely rigid and sturdy support.
- 8. Place the engine to be tested in the engine holder.

 Ensure that the ignition leads exert no force on the engine along its thrust axis. Zero the peak detector circuit. Attach temperature sensor to the engine.

- 9. Press key 1 or key 2 to initiate a test. The TEST LED should come on and the CLEAR LED should go out. Press key Ø if it is necessary to cancel a test before the engine is fired.
- 10. Fire the engine. The measured total impulse should appear on the LCD at burnout.
- 11. When the TEST LED goes out, indicating the end of the test, read out the performance parameters of interest by pressing keys 7, 8, 9, B, and/or E.
- 12. Clear the memory to set up for a new test by pressing key F. The CLEAR LED should come on and the CALIBRATED LED should remain on. Return to step 8 to conduct a new test.

COMPUTER PROGRAM

```
DFLOOR
                         ORG
     F100
                                  #63
                AEC12
                         LDX
FLES CEESES
                                           ; SET MUX WORL CONTROL
                                  #02
                         LDA A
F103 8602
                                  1CH
                         STA A
F125 971C
                                  #CFEH
                         LDA A
FD07 26F8
                                           ;SEND "SAMPLE" TO SHC
                                  PAL
FI09 E71340
                         STA A
                                  #CPSH
                         LLA . A
Frec Befg
                                           ;SET LOW 11 DAC BITS TO 1"
FLOE B71340
                         STA A
                                  PAI
                                  #272H
                         LDA A
FD11 8672
                                           ;SEND "HOLL" TO SHC
                                  PAI
                         STA A
FI13 B71340
                                           BEGIN NEW WORD A/D
                                  #40H
                 WNEX
                         L CA A
TL16 8640
                                           SET ROTATING BIT
                                  1IE
                         STA A
FI18 9710
                         LEA A
                                  #65
FL1A 8605
                                           ; SET BIT COUNTER
                                  1881
FD1C 9715
                         STA A
                                           ; SET DAC INITIAL VALUE
                         LEA A
                                  #80H
FI1E 8680
                                  BAKER
                         BRA
FD20 2026
                                          ; BEGIN NEW PIT A/L
                                  1EH
                  START
                         LIA A
F122 961B
                                           DECREMENT BIT COUNTER
                                  #01
                         SUB A
FD24 8001
                         STA A
                                  1E3
FD26 971B
                                           GO TO NEXT WORD AFTER 4 BITS
                                  NEXT
                         BEQ
FD28 272B
                         NOP
FIZA Ø1
                                  PBD
                         LCA A
FI2B P61342
                                  FBD
FD2E B61342
                         LDA A
                          NOP
FI31 01
                          NOP
FL32 e1
                                           FEXAMINE COMPARATOR
                                  #61
FD33 8401
                          AND A
                                           BRANCH IF SAMPLE > DAC
                                  PAST
                         BNE
FI35 260A
                                  1 E H
                          LDA A
FD37 961E
                                   1LH
FL39 L61L
FL3B 10
                          LIA B
                                            SUFTRACT ROT BIT FROM TEST
                          SBA
                                   1TH
                                           SHIFT ROTATING BIT
FD3C 74001D
                          LSR
                          BRA
                                   BAKER
FL3F 2007
                  PAST
                          LDA A
                                   1 EH
FD41 961E
                                            OR ROT LIT TO TEST
FL43 9A1L
FL45 74001D
                                   1Iä
                          ORA A
                                            ; SHIFT HOTATING BIT
                                   1 LH
                          LSR
                                            ; MASK OFF LAST 4 BITS
                                   #CFOH
F148 84FØ
                  BAKER
                          AND A
                          STA A
                                   1 EE
FD4A S71E
                                            ; COMPLEMENT OUTPUT TO DAC
                                   #ØFØH
                          EOR A
 FI4C 88FØ
                                          ; ADD MUX CONTROL
                                   1CH
                          ORA A
 FL4E SA1C
                                            ;SEND TO LAC
                                   PAL
FL50 B71340
FL53 20CL
                          STA A
                                   START
                          BRA
                  NEXT
                          LDA
                              A
                                   1 EH
 FD55 961E
                                            STORE ALC VALUE UNPACKEL
                          STA A
                                   1FH.X
 FD57 A71F
                                            JANT UNCOMPLEMENTED
                                   1 C H
                          DEC
 FD59 7AEE1C
                          LEX
 FL5C 09
                                            ; GO TO NEXT WORL
                          BGT
                                   WNEX
 FESL 2EB7
                                            ; PACK ADC VALUE IN 2 EYTES
                          LIA A
                                   209
 FE5F 9620
                                   #64
 FL61 CE0004
                          LDX
                          LSR A
                  PACK
 FL64 44
                          LEX
 FE65 69
                          BNZ
                                   PACK
 FD66 26FC
                          ORA A
                                   216
 F168 SA21
                                            :LOW ADC BYTE
                                   241
                          STA A
 FE6A 9724
```

THIS DOCUMENT IS PEST QUALITY PRACTICABLE.
THE COPY COMMISSION TO THE DESCRIPTION OF PAGES WHICH DO NOT
REPRODUCE ENGISELY.

```
FD6C 9622
                          LTA A
                                   ESS
FD6E CE0004
                          LLI
                                   #04
FL71 44
                  PACK2 LSR A
FE72 09
                          CEX .
PD73 26FC
                                  PACK2
                          BNE
FE75 9725
                          STA A
                                  258
                                           HIGH ALC BYTE
FD77 86FC
                          LDA A
                                  #ØFCH
FC79 S624
                          SUB A
                                  24E
FD7B 5724
                          STA A
                                  248
F17E 8607
                         LCA A
                                  #@PH
FL7F 9225
                          SEC A
                                  25H
FI81 9725
                         STA A
                                  25H
                                           ; CHANGE SIGN OF RESULT
PI83 39
                         RTS
      FC37
                         ORG
                                  ØFC37H
FC37 8609
                 AVG8
                         LDA A
                                  #09
                                           FAVERAGES & A/D OUTPUTS
FC39 9716
                         STA A
                                  1€8
FC3B 8600
                         LDA A
                                  #60
PC3D 9714
                         STA A
                                  14H
FC3F 9715
                         STA A
                                  15H
FC41 9616
                 AVG
                         LDA A
                                  16H
FC43 8001
                         SUB A
                                  #1
FC45 9716
                         STA A
                                  168
FC47 2F12
                         BLE
                                  RUN1
FC49 61
                 WAIT
                         NOP
                                           ; WAIT FOR A/L OUTPUT
PC4A 61
                         NOP
FC4B 3E
                         WAI
FC4C 9614
                         LCA A
                                  149
FC4E D624
                         LDA B
                                  24H
FC50 1B
                         ABA
FC51 9714
FC53 9615
                         STA A
                                  14R
                         LDA A
                                  158
FC55 £925
                         AIC A
                                  25E
FC57 9715
                         STA A
                                  15A
                                           FALL 8 A/L OUTPUTS
FC59 2036
                         BRA
                                  AVG
FC5B CE0003
                 RUN1
                         LIX
                                  #03
PC5E 740015
                 RUN
                         LSR
                                  158
FC61 760014
                         ROR
                                  14H
FC64 09
                         LEX
                                          ; IIVIIE SUM BY & FOR AVG
FC65 26F7
                         BNE
                                 RUN
FC67 39
                         RTS
     1340
                 PAL
                         EQU
                                 1340R
     1342
                 PBL
                         EQU
                                 1342H
                         ENE
```

```
PE00
                                 ØFE00H
                        ORG
PEGG 964E
                 OPER
                                 4EH
                        LIA A
FE02 910F
                         CMP A
                                 #2FH
                                          ; IO NOT PROCEED IF UNCALIFRATED
                                 OPER
FE04 26FA
                        BNE
PE06 3F
                        SWI
FE07 8602
                                 #2
                        LIA A
                                 268
                                           ;SET INTERVAL COUNTER
FE09 9726
                        STA A
                        LDA A
                                 #2CH
FEØR 8620
FECD 9729
                        STA A
                                 29 H
                                          SET MEMORY POINTER
                                 #2D3B
PEØP 86D3
                        LDA A
                                 PAL
                                          ENABLE THRUST COMPARATOR
                        STA A
FB11 B71340
FE14 8663
                        LDA A
                                 #63F
                                          SET UP LED
                        STA A
                                 PAL
FE16 F71340
                                 423
FE19 9742
                        STA A
                                          ; AVG PRESENT OUTPUT FOR ZERO REF
                         JSR
                                 AVG8
FE1B BIFC37
                                          ; WAIT FOR TIMER INTERRUPT
FE1E 3E
                 STRT
                        WAI
                        JSR
FE1F BLF828
                                 NETTST
                                          SUFTRACT ZERO REF FROM A/D
PE22 9646
                        LIA A
                                 483
                                          ; BRANCH IF THST STARTEL
FE24 260F
                                 STRT1
                        FNE
                        LEA A
                                 178
FE26 9617
FE28 &612
                        SUB A
                                 #19
FE2A 9618
                        LIA A
                                 15H
FE2C 8200
                        SBC A
                                 #6
                                 STRT
                                          ; WAIT FOR THEUST > 0.50N
FEZE ZDEE
                        BLT
FE36 7A0026
                        IFC
                                 2€H
FE33 2CES
                        BGE
                                 STRT
                                          ; WAIT FOR THST HI FOR 3 COUNTS
                 STRT1
FE35 8601
                        LIA A
                                 #1
FE37 9748
                        STA A
                                 488
FE39 9B27
                        ALL A
                                 27d
FE3B 9727
                                           ;TIME JOUNTER LOW BYTE
                                 27H
                        STA A
FE3D 9628
                                 258
                        LDA A
FE3F 8900
                        ACC A
                                 #€
                                           ;TIME COUNTER HIGH BYTE
FE41 9728
                                 189
                        STA A
FE43 818F
                        CMP A
                                 #8FH
PE45 2607
                        BNE
                                 TEST1
FE47 8602
                        LIA A
                                 #62
FE49 9739
                        STA A
                                 39H
                                          ;STCP TIMING AFTER 73 SEC
FE4B 7EFF2C
                        JMP
                                 DELAY
                 TEST1
                                 285
FE4E 962B
                        LIA A
FE50 2703
                        BEC
                                 TEST
                                          ; EYPASS IF BURNOUT PAST
                                 TEST3
FE52 7EFF17
                         JMP
PE55 9627
                 TEST
                        LEA A
                                 27#
FE57 808E
                        SUB A
                                 #EI3#
FE59 9626
                        LIA A
                                 25E
                                 #12H
FE5B 8212
                        SEC A
                                          ;STCP STORING THST AFTER 9.52 SEC
FE5D 2D04
                        BLT
                                 BURN
PESP 8601
                        LIA A
                                 #61
                         STA A
FE61 972B
                                 2BH
FE63 962b
                 BURN
                        LIA A
                                 218
                                 STORE
FE65 2763
                        BEQ
FE67 72FEF5
                        JMP
                                 TEST2
                                          BYPASS IF BURNOUT FAST
                 STORE
FE6A 8683
                        LCA A
                                 #3
FEGC 9B2A
                                 2AH
                                           MEMORY POINTER LOW
                        ADL A
                        STA A
PE6E 972A
                                 2AH
                        LDA A
                                 29 H
FE70 9629
FE72 8500
                        A DC A
                                 #8
                                          :MEMORY POINTER HIGH
                                           FINCREMENT MEMORY POINTER BY 3
FE74 9729
                        STA A
                                 29H
                                           ; PUT MEMORY POINTER IN X
                                 25 H
FE76 CE29
                        LLX
                 STOR1
                                 20H
FE78 9620
                        LIA A
FE7A A700
                        STA A
FE7C 09
                        CEX
                                                                               1. 1.
FE7E 9621
                        LLA A
                                 211
FE7F A700
                        STA A
```

A CONTRACTOR LO KUT

```
FE81 09
                          CEX
FE82 9622
                                   22H
                          LDA A
FE84 A700
                         STA A
                                   I
FE86 9617
                 FMAX
                         LIA A
                                   17H
                          SUB A
FE88 902I
                                            SUBTRACT FMAX FROM THRUST
                                   SIH
FE8A 9618
                         LDA A
                                   168
FE8C 922C
FE8E 2132
                         SEC A
                                   EDS
                         BLT
                                   IMPULS ; BRANCE IF FMAX > TERUST
FE90 9621
                         LLA A
                                   215
FE92 C087
                          SUB B
                                   #135
                                            ; WAS PREVIOUS FMAX > 4.5N?
FE94 DE2C
                                   2CH
                         LDA B
                                   #60
FE96 C200
                         SPC B
FE98 2012
                         BGE
                                   TIMT
                                            BRANCE IF YES
PE9A 9617
PE9C 972I
                 NEWMAX LDA A
                                   17H
                         STA A
                                   5[4
FE9E 9618
                          LDA A
                                   128
FEAØ S72C
                          STA A
                                   2CH
                                            ;SET FMAX = THRUST
                                   27H
FEA2 9627
                         LEA A
PEA4 972E
                          STA A
                                   2FH
FEA6 9628
                          LEA A
                                   188
FEAS 972F
                         STA A
                                   2FH
                                            FREMEMBER TIME OF FMAX
FEAA 2016
                         BRA
                                   IMPULS
FEAC 9627
                 TIMT
                         LIA A
                                   27H
                         SUB A
PEAS 902E
                                   STE
FEB0 9730
FEB2 9628
FEB4 922F
                         STA A
                                   30 H
                         LCA A
                                   22£
                         SBC A
                                   2FH
FEB6 9731
                                            FIND TIME-TMAX
                         STA A
                                   31fi
FEB8 9630
                         LDA A
                                   36 B
FEBA 8664
                         SUB A
                                   #160
FEBC 9631
                         LDA A
                                   31H
                                            ; LAST FMAX MORE THAN 2.2 SEC PAST?
FEBE 8200
                         SEC A
                                   #00
PECC 2118
                         BLT
                                   NEWMAX ; BRANCH IF NO
                                   32H
PEC2 9632
                 IMPULS LIA A
                                           FACT THST TO TOTAL IMPULSE
FEC4 9B17
                         A IIA
                                   17H
FEC6 9732
                         STA A
                                   32H
FEC8 9633
                         LIA A
                                   33E
FECA 9918
FECC 9733
                         ADC A
                                   188
                         STA A
                                   33r.
FECE 9634
                         LIA A
                                  34H
FEDØ 8500
                         ADC A
                                   #60
                         STA A
                                           ;TOTAL IMPULSE HIGH BYTE
FET2 9734
                                   34 H
FEL4 SE20
                         LIA A
                                  20H
                                           FRIVILE FMAX BY 16
FE16 1621
                         LIA B
                                  SIH
FEDS CECCO4
FELB 44
                          LEX
                                   #64
                 DIVBY LSR A
PECC 56
                         RCR B
FEDD @9
                         DEX
                                  DIVBY
FELE 26FB
                         BNE
PEEC CSCC
                         ADC B
                                   #20
FEE2 D735
FEE4 8900
                                           ; LSD OF FMAX/16
                         STA B
                                   35H
                         ALC
                             A
                                   #60
PEE6 9736
                         STA A
                                   36#
                                           ; MSD OF FMAX/16
PEE8 9635
                         LDA A
                                   35H
FEEA L017
                         SUB B
                                   17H
FEEC 1636
FEEE 1218
FEF0 2003
                         LIA B
                                   36H
                                            ;FM/X/16 - THST
                          SBC B
                                   18H
                                            BRANCH IF THST<FMAX/16
                         BGE
                                   TEST2
PEF2 7EFile
                          JMP
                                   STRT
FEF5 962k
FEF7 2611
                 TEST2 LLA A
                                  2B:
                                            FERANCE IF BURNOUT PAST
                         BNE
                                   TISTS
FEF9 9627
                         LDA A
                                   279
PEFB 8664
                         SUB A
                                   #160
```

THIS POSTERIOR IS FROM OWASTRY FRACTICABLE:
THE COLOR OF THE COLOR OF

```
FEFD 9628
                                  288
                         LDA A
FEFF 8200
                         SBC A
                                  #00
                                           ; IS TIME > 0.20 SEC?
                                           BRANCH IF YES
FF01 2CE3
                         BGE
                                  TBURN
FF03 7EFE1E
                                           TUTTUO I A TXAN RCT TIAW;
                                  STRT
                         JMP
FF06 8601
                  TBURN
                         LDA A
                                  #21
                         STA A
FF08 9721
                                  211
                                  275
FFEA 9527
                         LLA A
                                  37H
                                           BURN TIME LOW BYTE
FF6C 9737
                         STA A
FFØE 9628
                         LDA A
                                  288
                                           ; BURN TIME HIGH BYTE
FF10 9738
                         STA A
                                  38E
FF12 7EFEC8
                                  LIMP
                         JMP
FF15 2012
                         BAA
                                  GOBCK
                  TEST3
FF17 9635
                         LDA A
                                  35H
                         A IIA
                                  #15
FF19 BBOF
FF1B 9636
                                  36A
                         LDA A
FF1F 9635
                         AIC
                             A
                                  #60
                         LIA
                                  35H
                             A
FF21 9017
                         SUB
                             A
                                  17E
FF23 9636
                         LIA A
                                  36#
                                           ; (FMAX/16) - 0.5N - THST
                         SBC A
FF25 9218
                                  18H
                                           ; BRANCE IF EJECTION OCCURS
                         BLT.
                                  DELAY
FF27 2103
FF29 7EFE1E
                 GOBCK
                         JMP
                                  STRT
                 LELAY
                                  39 H
FF2C 9639
                         LIA A
                                           ; BRANCE IF EJECTION PAST
FF2E 2610
                                  TEMP1
                         BNE
                         LIA A
                                  #61
FF30 8601
                         STA A
FF32 9739
                                  39E
FF34 9627
                         LIA A
                                  27H
FF36 9637
FF36 973A
                         SUB A
                                  37H
                                           ; DELAY TIME (LC)
                                  3AH
                         STA
                             A
                                  285
FF3A 9628
                         LIA A
FF3C 9238
                         SEC
                                  384
                                           ; DELAY TIME (HI)
FF3E 973B
                         STA A
                                  3 B B
                 TEMP1
FF40 9649
                         LIA A
                                  49ä
FF42 8101
                         CMP A
                                  #61
                                           ; ERANCH UNLESS IN NO-TEMP MODE
FF44 2602
                         PNE
                                  TEMP
FF46 201E
                                  FINIS
                         BRA
                 TEMP
FF48 9639
                         LDA A
                                  39H
FF4A 8102
                         CMP A
                                  #62
                                           BRANCH IF TIME > 73 SEC
FF4C 2702
                         BEQ
                                  TEMP2
FF4E 2019
FF50 86C3
                                  GOECK
                         BRA
                 TEMP2
                         LDA A
                                  #CC3H
FF52 B71340
                                           ; ENABLE PK LET COMPARATOR
                         STA A
                                  PAD
FF55 8600
                         LIA A
                                  #60
FF57 9714
                         STA A
                                  14H
FF59 9715
                         STA A
                                  15H
FF5B BLFC37
                         JSR
                                  AVJ8
FF5E 9614
                         LDA A
                                  14F
FF60 971F
                                           STORE PEAK TEMP (LO)
                         STA A
                                  1FH
                                  15H
FF62 9615
                         LIA A
                                           STORE PEAK TEMP (HI)
FF64 9723
                         STA A
                                  23H
                                  #53H
FF66 8653
                 FINIS
                         LIA A
                                           TURN OFF TESTING LED
FF68 B71340
                         STA A
                                  PAD
FF6B 9742
                         STA
                                  42H
FF6D 7EFB65
                         JMP
                                  KEYIN
                 LIMP
     FBC8
                         EQU
                                  DFBCeH
     FA40
                  DTEMP
                         EQU
                                  CIA4CH
                                  ØFC37H
                  AVG8
                         EQU
     FC37
     F828
                 NETTST EQU
                                  216289
                                  13464
     1346
                 PAC
                         ZQU
     PŁ65
                         EQU
                 KEYIN
                                  efb65H
```

TON DU NOT

رەكلەن.

END

```
PWRUP
     Fb43
                         ORG
                                  0FB43H
FB43 CE
                         CLI
                                  #60H
FB44 StEU
                         LDA A
                                  1345R
                                           ; DISABLE NMI FROM TIMER
PB46 F71345
                         STA A
FB49 P71343
                                  1343H
                                           SET DATA DIR REG B FOR INFUT
                         STA A
                                  #60 H
FE4C 8600
                         LIA A
                                  441
FB4E 9744
                         STA A
FB59 9749
                         STA A
                                  499
                                  HETFE
FB52 867F
                         LIA A
                                  45H
PB54 9745
                         STA A
                                           ;SET STACK POINTER TO 2075
FP56 9E44
                         LIS
                                  441
PB58 86FF
                         LDA A
                                  #CFFH
                                           ;SET LATA LIR REG A FOR OUTPUT
FB5A B71341
                         STA A
                                  1341H
                                           CLEAR ALL HAM
                         JSR
                                  ZERC
FB5D BLFC8B
FB60 8613
                         LLV V
                                  #13H
                                  423
FE62 9742
                         STA A
                         NOP
FB64 @1
FE65 9646
                 KEYIN
                         LEA A
                                  452
                                           ; HAS MOIE SET FROM
                                  4SE
FB67 9149
                         CMP A
                         BNE
                                  KEYACT
                                          KEYBOARD CHANGED?
FB69 2602
                                           ; IF NO. TO NOTHING
; IF YES, JUMP TO RESPONSE
FB6B 20F8
                                  KEYIN
                         BRA
                 KEYACT STA A
7B6D 9749
                                  493
FB6F 9B49
                         ALL A
                                  49H
FB71 9B49
                         ADD A
                                  4 - H
                                           FLOAD OFFSET FOR JUMP
Fb73 9731
                         STA A
                                  3LE
FB75 86FC
                                  #EFCH
                         LIA A
FB77 9730
                         STA A
                                  CH
                                           ; LOAD BASE ADDRESS FOR JUMP
                                           JUMPP TO MOIE ROUTINE
                                  3 C H
FE79 LE30
                         LUX
FB7B CECC
                         JMP
                                           FVECTOR TABLE
                                  X
                                  @FC8BH
     FC8B
                         ORG
FC8B 8600
                 ZERO
                         LDA A
                                  420
FC81 5740
                         STA A
                                  42 ñ
FC8F 9741
                         STA A
                                  413
FC91 BDFF70
                         JSR
                                  HEXBCD ; ZERO LCD
                                  #48E
FC94 CE0048
                         LLX
FC97 8606
                         LDA A
                                  #60
FC99 A700
                 CLEAR
                         STA A
                                  X
                                           CLEAR ZERO-PAGE RAM
FC9B 69
                         DEX
                                  CLEAR
FC9C 26FB
                         BNE
FC9E CE5FFF
                         LLX
                                  #5FFFH
                                  #66
                         LIA A
FCA1 BEDE
                                           CLEAR DYNAMIC RAM
FCA3 A766
                 CLR2
                         STA A
                                  X
                                  19H
FCA5 LF19
                         STX
FCA7 69
                         CEX
                                  19 d
FCA8 9619
                         LDA A
FCAA C61F
FCAC 11
                         LDA B
                                  #1FH
                         CBA
FCAL 2704
                                  CLR3
                         BEQ
FCAF SEEC
                         LIA A
                                · # £ 0
                         BRA
                                  CLR2
PCB1 20F0
FCB3 SU4E
                 CLR3
                         LIA A
                                  4 EH
                                  HETH
FCB5 C60F
                         LIA B
FCB7 11
                         CBA
                                           ; TEST IF CALIBRATED
                         ENE
PCB8 2664
                                  CLR1
                                           ; IF YES.
FCBA 8643
FCBC 2002
                         LIA A
                                  #43H
                                           TURN ON CALLE & CLR LED
                                  DISP
                                           ; I ? NO,
                         BRA
FCBE 8613
                 CLR1
                         LIA A
                                  #13H
                                           TUHN ON CLR LED
FCC@ B71346
                 DISF
                         STA A
                                  PAL
FCC3 9742
                         STA A
                                  424
                                           TURN OFF TIMER NMI
FCC5 B71345
                         STA A
                                  1345H
FCC8 39
                         RTS
```

THIS DOCUMENT TO SECURE THE SECURE OF A SECURE OF SECURE


```
HEXECT LDA A
     FF7e
                                   0FF70H
PF70 EE00
                                   #00
                                             CLEAR OUTPUT
                                             ; BCD OUTPUT (HI)
FF72 973E
                          STA A
                                   3EH
                                             ;ECD OUTPUT (LO)
FF74 973F
                          STA A
                                   3PH
FF76 C610
                          LCA B
                                   #16
FF78 D747
                          STA B
                                   47H
FF74 8626
                          LEA A
                                   W26E
FF7C 9641
                          SUB A
                                   419
FF75 2008
                                   SHIFT
                          BGE
                                            ; IF INPUT WILL CAUSE
; OVERFLOW, THEN MAKE
; CUTPUT = 8989
FF88 6627
FF82 6741
                          LEA A
                                   #27E
                          STA A
                                   41E
                          LIA A
7784 E605
                                   #3FH
FF66 9746
                          STA A
                                   40H
FF88 780040
                  SEIPT
                          ASL
                                   468
                                             (IO) TURNI XEE;
                                             ; BEX INPUT (AI)
TTBE 758641
                          ROL
                                   418
PYEE CLOCOL
                          LDX
                                   #21
FF91 E600
                  LOUBL
                          LIA A
                                   #40
                                             ; PUTS CARRY EIT IN A
FF93 49
                          ROL A
                                   BEH,X
PF94 AS3E
                          ADC A
7796 15
7797 2408
                          CAA
                          BCC
                                   SIDE
FF99 AB3E
                          ADD A
                                   X, His
PF9B 19
PF9C A73E
                          CAA
                          STA A
                                   324.X
FFCE OI
                          SEC
FFSF 2005
                          BRA
                                   LECR
                  SIDE
                          ADC A
PPA1 AS3E
                                   3EH,X
PFA3 19
                          LAA
FFA4 A73E
                          STA A
                                   JEH.X
                  DECR
FFA6 29
                          DEX
FFA7 LF19
                          STX
                                   19H
                                   COUBL
FFA9 2CE6
                          BGE
FFAB 7ACC47
                          DEC
                                   478
                                   SHIFT
  AE 2EI8
                          BGT
                          LCX
                                            STORES CUTPUT IN LCD
11B0 CE0002
                                   #62
PFB3 8604
                          LDA A
                                   #34E
                                             :OUTPUT LATCHES
FFB5 5743
                          STA A
                                   42H
FFB7 AE3D
                          LDA A
                  OUT
                                   X.EIE
FFE9 84FØ
                          ANL A
                                   #0F0R
                                             JAIIS LATCH MUX CONTROL
                          ORA A
FFBB 9A43
                                   43H
FFBC 171340
                          STA A
                                   PAI
                                             ; LIGITS 2 THEN 4
FFC0 SEFF
                                   #2FFH
                          LIA A
                          DEC A
FFC2 4A
                  SEND
FFC3 26FL
                          BNE
                                   SEND
FFC5 A63L
                          LIA A
                                   3IH,X
                          ASL A
FFC7 48
FFCE 48
                          ASL A
FFC9 46
FFCA 48
FFCB 7C2643
                          ASL A
                          ASL A
                          INC
                                   43E
FFCE SA43
                          ORA A
                                   43H
FFI0 B71340
                          STA A
                                   PAL
                                             ; CIGITS 1 THEN 3
FFL3 86FF
                                   #CFFH
                          LEA A
FFE5 4A
                  SENI1
                         DEC A
FFL6 26FL
                          BNE
                                   SENE1
FFD8 7C0043
                          INC
                                   43B
FFLB 09
                          LEX
FFEC 2619
                          BNE
                                   CUT
FFDE 39
                          RTS
                  PAC
                          EQU
                                   1340H
     1340
                          END
```

```
FABO
             > IRCRES LDX
                                 OFABOH
PABO CEU1F4
                                 #508
                 TIAV
PAB3 01
                        NOP
PAB4 69
                         LEX
                                 WAIT
PABS 26FC
                                          ; LE FOUNCE KEYBOARD
                        BNE
FAB7 86F3
                                 #epsä
                        LIA A
                        STA A
FAB9 571340
                                 PAD
                                          FRESET IRQ FLIP-FLOP
FABC 9642
                        LIA A
                                 42K
FABE B71340
                        STA A
                                 PAD
                                          ; RESTORE LED CUTPUT
FAC1 B61342
                                 PBI
                                          ; INPUT KEYBOARI ENTRY
                        LIA A
                                 #1EH
                                          ; MASK OFF KEY BITS
FAC4 841E
                        AND A
FAC6 44
                        LSR A
FAC7 9746
                        STA A
                                 4EH
FAC9 9646
                        LDA A
                                 4EH
                                 TAKIN
                                          ; IF NOT STOP OR ZERO
FACB 2706
                        PEQ
PACE SIGF
PACE 2702
                        CMP A
                                 *CFH
                                         COMMANDS, RETURN TO
                        BEQ
                                 TAKIN
                                          : PRCGRAM
PAC1 2621
                        ERA
                                 BACK
PAD3 9642
                 TAKIN LDA A
                                 422
PAL5 8163
                        CMP A
                                 #63H
                                          :IS TEST LEL ON?
PAD7 2667
                        BNE
                                 TAK
                                          ; IF YES, TURN OFF
FAI9 8653
                                 #53H
                        LIA A
                                 PAL
FACE E71340
                        STA A
FADE 9742
                        STA A
                                 42H
FAEØ 32
                                          ; IF STOP OR ZERO KEY
                 TAK
                        PUL A
                        PUL A
                                          WAS PRESSED, RETURN
PAE1 32
FAE2 32
                        PUL A
                                          ;TO KEYIN ONLY
FAE3 32
                        PUL A
PAE4 32
                        PUL A
FAE5 32
                        PUL A
FAE6 32
                        PUL A
FAE7 8665
                        LCA A
                                 #65H
FAE9 36
                        PSH A
                                 #CFBH
Paga 867B
                        LDA A
PAEC 36
                        PSH A
PAED 8600
PAEF 36
                        LEA A
                                 #66
                        PSH A
PAPO 36
                        PSH A
PAF1 36
                        A ESA
FAF2 36
                        PSE A
PAP3 36
                        PSH A
                BACK
PAF4 3B
                        RTI
     1340
                PAD
                        EQU
                                 1340H
     FF76
                 HEXBCC EQU
                                 OFF70n
                PPC
                        EQU
                                13423
     1342
     FC68
                        ORG
                                 ØFCE8H
                NMIRES LEA A
                                #248
FC68 86F8
                               134CH
                        STA A
                                          :LOAD TIMER FOR 2 MSEC
PC6A B7134D
PCGL 9642
FCGF 8AC8
                        LIA A
                                 42H
                        OBA A
                                 #8
FC71 B71340
                        STA A
                                 PAD
                                         ENABLE RAM REFRESH
                                 #15
FC74 CE000F
                        LIX
FC77 69
                 WAIT
                        CEX
FC78 26FL
                        BNE
                                 WAIT
                                         WAIT FOR RAM REFRESH
                                 428
FC7A 9642
                        LIA A
FC7C 94F7
                                 #EF7H
                        AND A
PC7E B71340
                                         STCP RAM REFRESH
                        STA A
                                 PAD
                        LCA A
                                 49H
                                          ; WHAT MOLE WAS SELECTED
FC81 9649
                                 #7
FC83 8007
                        SUB A
                                          ; BY KEYBOARD?
                                 BACK
                        PGT
FC35 2E63
PC87 BEFFER
                        JSR
                                 ADC12
                                            GO TO A/D IF REQUIRED
                BACK
                        RTI
FCSA 31
                                 13464
     1346
                 PAC
                        EÇU
                ADC12
                                 07160E
     FD00
                       FOU
                        END
                                              Had same - I
```

J. BOT

```
ORG
                                  07A40 H
     FA46
FA48 8600
                LTEM.P
                                  #40
                                           CLISPLAY TEMP IN IEG C
                         LIA A
FA42 9701
                         STA A
                                  01 H
                                           ;SET UP FOR LIVISION
                         STA A
                                  Ø E ::
PA44 976E
PA46 978A
                         STA A
                                  OAH
                                  #5BH
7A48 865B
                         LDA A
                                  178
FA4A 901F
                         SUB A
FA4C S76C
                                           CHANGE SIGN OF ACC
                         STA A
                                  @ CH
                         LDA A
                                  487
PA4E 8667
                         SBC A
                                  23 E
FA50 9223
                         STA A
                                  ØBB
FA52 970B
PA54 6617
                         LTA A
                                  #31
                                           ;31 TO LIVISOR
PA56 9707
                         STA A
                                  OFH
                                  #62
FA58 CE0002
                         LDX
PA5B 950C
                 QUAL LEA A
                                 BCB
                                          ;QUAIRUPLE OUTPUT
                         AIL A
                                  0 C H
PASE SECC
                         STA A
                                  aca
FASF S70C
                         LDA A
                                  0BH
FA61 SECE
                         ADC A
                                  ØBE
PA63 990B
FA65 5703
                         STA A
                                  Ø3H
FA67 PEGA
                         LDA A
                                  HAS
                         ADC A
FA69 990A
                                  MAN
FA65 570A
                         STA A
                                  ØAË
                         LXX
FA6L 69
                         BNE
                                  IAUG
FAGE 2CLB
                                           ; CONVERT TEMP TO VEIGHE DEGREES
FA70 BIF184
FA73 960B
                                  LVII
                         JSR
                                           BY DIVIDING A'T COUNT
                         LDA A
                                  E40
FA75 £741
                                           ; £Y 7.75
                         STA A
                                  41H
FA77 9600
                         LDA A
                                  OCE
FA79 9740
                         STA A
                                  4vH
                                          FRISPLAY PRAK TEMPERATURE
                         JSk
                                  HEXECD
FA7B BLFF70
FA7S 7EFB65
                         JMP
                                  REAIV
                                  OFACOE
     FACE
                         CâG
                         LIA A
                LTHST
                                           ; PEAK TERUST IN 2.1N
FA00 9621
                                  2LH
FA02 9706
                         STA A
                                  26H
                                           FMAX (LO) TO MPCANE
                         LIA A
                                  20H
FAØ4 SE2C
                                  Ø58
                                           FFMAX (BI) TO MPCAND
FAØ6 9725
                         STA A
FAØ8 8664
                                  #120
                         LIA A
                                           ; MULTIPLIER = 100
                                  64H
FAØA 5764
                         STA A
FAOC BEER
                         LDA A
                                  #40
                         STA A
                                  02H
FACE 9702
FA10 9703
                         STA A
                                  03H
FA12 £70I
                         STA A
                                  Ø DH
FA14 BIFICF
FA17 9602
                                  MULT
                                           :MULTIPLY FMAX BY 100
                         JSR
                         LDA A
                                  928
                                           FRODUCT TO DIVIDEND HI.
                         STA A
FA19 970A
                                  On Li
FA1B 9603
                         LDA A
                                  23 E
                                           ; CIVIDEND MED)
PAIR S70E
                         STA A
                                  OFfi
                                  24H
                         LLA A
FA1F 9664
FA21 978C
                                           ; DIVIDEND (LC)
                         STA A
                                  &C H
FA23 SC-IA
                         LIA A
                                  4AH
                                  e f H
                                           ; CALIB TO DIVISOR (LO)
FA25 9707
                         STA A
FA27 964F
                         LEA A
                                  4EH
                         STA A
                                          ; CALIB TO LIVISOR (MED)
FA29 570E
                                 B3 9
FAZE BIFI84
                         JSR
                                  DVID
                                           FRIVITE FROLUCT BY 10 N.
FAZE SECC
                                  BCE
                                           FRISPLAY PEAK THRUST
                         LIA A
FA30 9740
FA32 566E
                                  48H
                                           ; FMAX (LC) TO HEXBCD
                         STA A
                         LLA A
                                  ØEH
FA34 9741
                         STA A
                                  41H
                                           FMAX (HI) TO HEXBCL
FA36 EFFF70
                         JSR
                                  HEXECL
PA39 7EFE65
                         JMP
                                  KEYIN
                 DVID
     FDE4
                         EQU
                                  ØFL84H
                 MULT
                         EGU
                                  OFECFI
     FICF
```

THIS DOOR DUT IS BEET OWNERTY PRACTICABLE.
THE CONTROL OF TO DOOR OVER IND A
SICKLES ON FACES WHICH DO NOT
REPARE LOCAL EDGLEY.

```
FL84
                          ORG
                                   ØFL84H
                                   #25
PD84 CE0019
                 CVID
                          LIX
F187 9600
                                   #00
                          LIA A
FL89 9707
                                   97
                                            CLEAR UPPER DIVIVIDEND
                          STA A
FD88 9708
                          STA A
                                   80
F181 9709
                          STA A
                                   69
FDEF 9609
                  UNSDV1 LDA A
                                   69
                                            SUBTRACT DIVISOR FROM
FI91 9712
                          STA A
                                   12H
                                            ;UPPER CIVICENC
                                   efh
PL93 5661
                          SUB A
FIG5 $709
                          STA A
                                   ø٤
P197 $668
                          LCA A
                                   682
FD99 9711
                          STA A
                                   118
                          SEC A
FL9E 920E
                                   ØEH
F191 9766
                          STA A
                                   80
FD9F 9607
                                   07
                          LDA A
FEA1 5710
                          STA A
                                   10H
PLA3 926L
                          SBC A
                                   ech
PDA5 9767
                          STA A
                                   67 H
                                            ; BRANCH IF NO OVERFLOW
FCA7 240F
                          BCC
                                   UNSIV2
FDA9 9610
                          LDA A
                                   168
                                            CANCEL SUBTRACT IF OVERFLOW
PLAB 9707
                          STA A
                                   07
FDAL 9611
                          LDA A
                                   119
FDAF 9708
                          STA A
                                   83
FIB1 9612
                          LCA A
                                   128
                          STA A
                                   09
FDB3 9709
FLB5 @C
                          CLC
                                            ; FUT A Ø IN QUOTIENT
FLB6 2001
                                   UNSIV3
                          BRA
                  UNSDV2 SEC
                                            ; PUT A 1 IN QUOTIENT
FDB8 @D
PLB9 75000C
PDBC 75000B
                  UNSLV3 ROL
                                   Ø CH
                          ROL
                                   ØPH
FLBF 79000A
                          ROL
                                   ØAH
FCC2 798889
                          ROL
                                   69
FDC5 790008
                          ROL
                                   ø٤
FIC8 790007
                                            FROTATE CIVILENC LEFT
                          ROL
                                   07
FICE 09
                          DEX
                                            TEST COUNTER
FECC 25C1
                          BNE
                                   UNSIV1
FICE 39
                          RTS
                          END
     FDCF
                          ORG
                                   ØFDCFH
FDCF 8600
                  MULT
                          LCA A
                                   #00
PIL1 9700
                          STA A
                                   00
FII3 9701
                          STA A
                                   01
FDD5 CE0019
                                   #25
                  UNSMØ
                          LDX
                                            SET ITERATION COUNTER
PIIS ØC
                          CLC
PEE9 760000
                  UNSM1
                          RCR
                                   00
PDDC 768801
                          ROR
                                   01
FEEF 760002
                          ROR
                                   02
PES2 760003
                          ROR
                                   63
TDE5 766664
                                 . 04
                          ROR
FLES 69
                          LEX
                                            ; LECREMENT COUNTER
FDE9 TF19
                          STX
                                   194
FIEB 2712
FIEC 24EA
FIEF 9601
FIF1 8C
                          BEQ
                                            TEST COUNTER
                                   UNSM2
                          BCC
                                   UNSM1
                                            BRANCH IF MULTIPLIER BIT IS @
                          LIA A
                                            :ALI MULTIPLICAND IF
                                   01
                          CLC
                                            ; MULTIPLIER BIT IS 1
PIF2 5566
                          ADC A
                                   06
FDF4 9761
                          STA A
                                   01
TLF6 9600
                          LIA A
                                   60
FEF8 9965
                          ADC A
                                   65
PDFA 9700
PLFC 7EFLL9
                          STA A
                                   00
                                   UNSM1
                          JMP
FLFF 39
                  UNSM2
                          RTS
                                               THE BOOKS TO STATE OF THE TWO TRACTS CABLES
                          END
```

gar Com

A CARLOW MILLOW DO ROT

```
ercish
      FCL5
                          ORG
                  CALIB SWI
FCD5 3F
PCL6 BIFC37
                                    AVGS
                                             STORES ADD OUTPUT
                           JSR
FCE9 9614
                                             FOR 16N INPUT
                          LEA A
                                    14H
FCIB SØ4C
                          SUB A
                                    4CH
                                             SUPTRACT CALIB ZERO REF (LO)
PCDD 974A
                          STA A
                                    HAF
                                             ; CALIBRATION (LO)
FCIP 9615
                          LIA A
                                    15H
FCE1 924D
                                             ; SUETRACTS CALIB ZERO REF (BI)
                          SBC A
                                    HI4
FCE3 974b
                          STA A
                                    4FE
                                             (CALIBRATION (EI)
FCE5 9642
                          LIA A
                                    423
PCE7 81B3
                          CMP A
                                    #313H
                                             ; LIGHT UP CALIB LEL
FCE9 2764
                                    SET6
                          BEQ
FCEB 8643
                  SET4
                                    #43E
                          LDA A
PCEL 2002
                          BRA
                                    PUT0
FCEF 8663
                  SET6
                                    #63F
                          LCA A
FCF1 B71340
                  PUTØ
                          STA A
                                   PAD
FCF4 9742
                          STA A
                                   423
FCF6 860F
                                   #CPA
                          LIA A
FCF8 974E
                          STA A
                                             ;SET CALIBRATION INDICATOR
                                   4 E B
FCFA B71345
FCFL 7EFB65
                          STA A
                                   1345H
                                             CISABLE NMI
                          JMP
                                   KEYIN
     FB31
               >
                          ORG
                                   ©FB31n
FB31 3F
                 CALSET SWI
FB32 BLFC37
                                   AVGE
                          JSR
                                            ;STCRES ALC OUTFUT
FB35 9614
FB37 9740
                                   14H
                          LEA A
                                             FOR ZERO WEIGHT
                          STA A
                                   4CH
                                             ; CALIB ZERO REF (LO)
FB39 9615
                                   15H
                          LEA A
                          STA A
FB3B 974D
                                   4DH
                                             ; CALIB ZERO REF (HI)
FB3D B71345
                          STA A
                                   1345H
                                            ; CISABLE NMI
FB40 7EF565
                          JMP
                                   KEYIN
                                   3Fb65H
     FE65
                  KETIN
                          EQU
     FC37
                  AVG8
                          EQU
                                   ØFC37H
     1340
                  PAD
                          equ
                                   1340H
                          END
     FC00
                          ORG
                                   2FCe@H
PC00 7EFB65
                 VECTOR
                          JMP
                                            KEYIN
                                   ØFB65H
FC03 7EFE00
                                   @FE00H
                          JMP
                                            ;OPER (NO TEMP)
PC06 73FE00
                          JMP
                                   OF ECOH
                                            FER TO ;
FC09 7EFB31
                                   ØF131H
                          JMP
                                            CALSET
FCØC 7EFCL5
                          JMP
                                   ØFCL5H
                                            CALIE
PCOF TEFBAC
                          JMP
                                   @FBA@H
                                            ; DDTHST
PC12 7EFBAC
                          JMP.
                                   OFBACH
                                            FIRTEMP
FC15 7EFA00
FC18 7EFbC8
                          JMP
                                   CFA00H
                                            :DTEST
                          JK.P
                                   ØFPC9E
                                            FLIMB
PC1B 7EFB00
                          JMP
                                   efbebh
                                            ; DBIIM
PC1E 7EFB24
                          JMP
                                   07124H
                                            : ( ETV :
PC21 7EFA40
                          JMP
                                   GFA40H
                                            : CTEMP
FC24 7EF800
FC27 7EF500
                          JMP
                                   @F600B
                                            ; (APCOR)
                          JMP
                                   ØFSØØB
                                            :: LCSC)
PC2A 7EFB24
                          JMP
                                   ØFB248
                                            ; DDTIM
                                   Ø#C8BH
PC2L ELFC8B
                          JSR
                                            ; ZEhO
FC30 7EFE65
                          JMP
                                   @FE65H
                          OKG
                                   ØFFF88
     FFF8
                                            :IRC VECTOR
;SWI VECTOR
;NMI VECTOR
PFF8 F4B0
                          WORD
                                   OFABOH
PFFA FC68
PFFC FC68
                          WORD
                                   ØFC68B
                          WORL
                                   @FCG3H
PFFE FB43
                          WORD
                                   ØFB43H
                                            STARTUP VECTOR
                          END
```

100

The world will the world

SYP

```
FBC8
                         ORG
                                  ØFEC8#
                         L DA A
PBC8 9632
                 CIMP
                                  32H
                                           COMPUTES & DISPLATS IMPULSE
FBCA SE32
                         A DD
                                  328
                                           : LOUBLE IMPULS
FBCC S7EC
                         STA
                                  BOG
FECE 9633
                         LDA A
                                  33ñ
                         ACC A
FBLO SS33
                                  33d
7BD2 970B
                         STA A
                                  03B
FBI4 9634
                         LEA A
                                  345
FBL6 9934
                         ACC
                                  348
                             A
FBD8 978A
                         STA
                             A
                                  EA9
                                           STORE IMPULS IN DIVICEND
PBIA 964A
                         LIA A
                                  444
FBCC $70F
                         STA A
                                  0FH
FBCE 964B
                         LDA A
                                  413
FBEG E70E
                         STA A
                                  SER
                                           STORE CALIBRATION IN LIVISOR
FBS2 5600
                         LDA A
                                  #20
FEE4 9761
                         STA
                                  3ï.i
FRE6 BLF164
                         JSR
                                  IVIL
                                           ; PERFORM DIVISION TO GET
FBES S60B
                         LEA A
                                  BHO
                                           ;UNITS OF .01 N-SEC
FBEB 9741
                         STA A
                                  416
FBEL 960C
                         LIA A
                                  OCH
FBEF 9740
                         STA A
                                           CONVERT QUOTIENT TO BCI
                                  40 H
FBF1 BCFF70
                         JSR
                                  HEXBCD
                                           JANE DISPLAY
FEF4 S645
                         LIA
                             A
                                  493
FBF6 6002
                         SUB A
                                  #2
FBF8 2223
                         EGT
                                  ECK
FBFA 7EFF17
                                  TEST3
                         JMP
                 BCK
FBFD 7EFB65
                         JMP
                                  KEYIN
     Fb00
              >
                         ORG
                                  ROOSIS
FB00 9637
                 IPTIM
                                           ; CONVERT BURN TIME
                         LIA A
                                  37H
PB02 970C
                         STA A
                                  ROS
                                           ; INTERVAL COUNT
FB04 9638
                         LIA A
                                  398
FB06 976b
                         STA A
                                  JE3
                                           MOVE BURN TIME TO DIVIDEND
FB08 8605
                 SETUP
                         LDA A
                                  #65
FBCA 978F
                         STA A
                                  CFH
                                           :DIVISOR=5
FB0C 8600
                         LCA A
                                  #66
                                           CLEAR OTHER CIVISION EYTES
FBOE 9701
                         STA A
                                  01H
FB10 970E
                         STA A
                                  3EE
FB12 970A
                         STA A
                                  CAH
FB14 BCFD84
                         JSE
                                  DVID
FB17 968C
                         LIA A
                                  ØC5
FB19 9748
                         STA A
                                  403
FB15 960B
                         LCA A
                                  06d
FB1D 9741
                         STA A
                                  411
PB1F BCFF7@
                         JSR
                                  HEXBCT
                                           ; LISPLAY TIME IN BUND & EDTHS
FB22 200A
                         ERA
                                  GOLK
                                           FOF A SECOND
FB24 S63A
                 LITIM
                         LIA A
                                  3AH
                                           CONVERT DELAY TIME
FB26 970C
                         STA A
                                           ; INTERVAL COUNT
                                  OCH
                         LIA A
FB28 963B
                                  31H
PEZA S70 B
                         STA
                                  EIS
                                           MOVE DELAY TIME TO DIVILEND
FB2C 2ULA
                                  SETUP
                         BKA
FB2E 7EFL65
                 GOFK
                         JMP
                                  KEYIN
     FF17
                 TEST3
                         EQU
                                  CFF17H
     FP76
                 HEXBCD
                                  e ff7eb
                         EÇU
     FB65
                 KETIN
                         EOU
                                  ØFF65U
     F184
                 LAIL
                         EQU
                                  OFDE4H
                         END
```

```
F828
                         ORG
                                 @ F828H
                NETTST
                        LEA A
$828 £624
                                  24H
¥824 9614
                         SUB A
                                  14H
                                            ; NET THRUST LOW BYTE
F82C 9717
                         STA A
                                  178
F82E 84F0
                         ANL A
                                  #ØFØH
                                            JUNPACKEL NET THRUST MED BYTE
1836 5721
                         STA A
                                  218
F832 9625
                                  25H
                         LDA A
                         SBC A
                                  158
F634 9215
¥63€ 9718
                         STA A
                                  16H
                                            ; NET THRUST HIGH BYTE
F638 E460
                         ANL A
                                  #86#
F834 & 160
                         CMP A
                                  #608
£830 2008
                         BNE
                                  NET
                                           ; MAKES NET THRUST ZERC
FEBE SEGG
                         LDA A
                                  #88
                                          ; IF NEGATIVE
FE42 9717
                         STA A
                                  17H
FE42 9718
                         STA A
                                  188
F844 9721
                         STA A
                                  21H
F646 CE2004
                                  #64
                 NET
                         LIX
F845 5617
                         LIA A
                                  17H
FE48 It18
                         LDA B
                                  188
FS4L 48
                 UNPCK
                         ASL A
184E 58
                         ASL B
                         DĒX
FE4F @S
F850 LF19
                         STX
                                  19H
F852 2EF9
                                  UNPCK
                         BGT
F854 9720
                 BACK
                                  20H
                                          JUNFACKED NET TERUST LOW BYTE
                         STA A
7856 [722
                                           ;UNPACKET NET THRUST HI BYTE
                         STA B
                                  22H
F658 39
                         ats
                         END
                                  SEEVSH 
     FEAD
                         ORG
                DETHST LLA A
FBA0 2613
                                  #6134
                                          ; ENABLE THRUST COMPARATOR
FBA2 271340
                         STA A
                                  PAL
FBA5 9642
                         LIA A
                                  424
FBA7 B71340
                         STA A
                                  PAD
FEAA 266A
                                  ATOL
                         37.1
                DETEMP LIA A
FBAC 86C3
                                  #4 C3H
                                          ; ENABLE THERMOCOUPLE COMPARATOR
FEAS F71340
                         STA A
                                  PAL
FEE1 9642
                                  42H
                         LDA A
PBB3 871340
                         STA A
                                  PAD
File EDFD00
                         JSR
                 1CTA
                                  ALC12
FBBS 9624
                         LIA A
                                  24H
FP35 9740
                         STA A
                                  48E
                                          LOW ADC TO HEXBCD
PBEL 9625
FREF 9741
                         LCA A
                                  11CS
                         STA A
                                  415
                                          ;HIGH ADC TO HEXBOD
FEC: BDFF70
                         JSä
                                  HEXICI
HEC4 7EF665
                         JMP
                                  KEYIN
                 HEXECD EQU
     317C
                                  eff7eh
     :16:
                 KEYIN
                         EQU
                                  JF165.i
     1346
                 PAI
                         E¢J
                                  13484
     TICK
                 ADC12
                         EÇU
                                  2 FICEH
                         ENC
```

LIST OF REFERENCES

- 1. Ott, H.W., Noise Reduction Techniques in Electronic Systems, John Wiley, 1976.
- 2. Cook, N.H., and Rabinowicz, E., Physical Measurement and Analysis, pp. 125-134, Addison-Wesley, 1963.
- 3. Baumeister, I., and Marks, L., Standard Handbook for Mechanical Engineers, 7th ed., pp. 5-30-5-104, McGraw-Hill, 1967.
- 4. Wait, J.V., Huelsman, L.P., and Korn, G.A., <u>Introduction</u> to Operational Amplifier Theory and Applications, McGraw-Hill, 1975.
- 5. National Semiconductor Corp., Linear Applications Handbook, vol. 1, 1977.
- 6. Analog Devices, Inc., <u>Data Acquisition Products Catalog</u>, 1978.
- 7. Millman, J., and Halkias, C.C., Integrated Electronics, pp. 549-553, McGraw-Hill, 1972.
- 8. Miller, J.T., The Instrument Manual, pp. 210-264, United Trade Press, 1971.
- 9. Weast, R.C., Handbook of Chemistry and Physics, 49th ed., pp. E103-E111, Chemical Rubber Co., 1968.
- 10. Analog Devices, Inc., Analog-Digital Conversion Handbook, 1972.
- 11. Intel Corporation, Component Data Catalog, 1978.
- 12. Peatman, J.B., <u>Microcomputer-Based Design</u>, McGraw-Hill, 1977.

INITIAL DISTRIBUTION LIST

		No. Copies
1.	Defense Documentation Center Cameron Station	2
	Alexandria, Virginia 22314	
2.	Library, Code 0142 Naval Postgraduate School Monterey, California 93940	2
3.	Department Chairman, Code 62 Department of Electrical Engineering Naval Postgraduate School Monterey, California 93940	1
4.	Assoc Professor M. L. Cotton, Code 62 Cc Department of Electrical Engineering Naval Postgraduate School Monterey, California 93940	1
5.	LT Arthur H. Barber III, USN 1408 N. Cascade Ave. Colorado Springs. Colorado 80907	1